• Title/Summary/Keyword: implicit functions

Search Result 80, Processing Time 0.034 seconds

Automatic NURBS Surface Generation from Unorganized Point Cloud Data (임의의 점 군 데이터로부터 NURBS 곡면의 자동생성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.200-207
    • /
    • 2006
  • In this paper a new approach which combines implicit surface scheme and NURBS surface interpolation method is proposed in order to generate a complete surface model from unorganized point cloud data. In the method a base surface was generated by creating smooth implicit surface from the input point cloud data through which the actual surface would pass. The implicit surface was defined by a combination of shape functions including quadratic polynomial function, cubic polynomial functions and radial basis function using adaptive domain decomposition method. In this paper voxel data which can be extracted easily from the base implicit surface were used in order to generate rectangular net with good quality using the normal projection and smoothing scheme. After generating the interior points and tangential vectors in each rectangular region considering the required accuracy, the NURBS surface were constructed by interpolating the rectangular array of points using boundary tangential vectors which assure C$^1$ continuity between rectangular patches. The validity and effectiveness of this new approach was demonstrated by performing numerical experiments for the various types of point cloud data.

A Development of Task-oriented Programming System for the Application of Robot (로봇 응용을 위한 공정 지향적인 프로그래밍 시스템 개발)

  • Park, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.34-42
    • /
    • 1996
  • Robot programming has been discussed in detail during the recent years. Numerous studies in particular presented relevance, solution concepts and implementation of off-line programming. In this paper a new user-friendly robot programming method is introduced, which permits the implicit description and programming of assembly process. On the functional level of programming, the assembly processes are described in terms of their operational functions. On the language level, the individual functions are then translated into commands for the robots.

  • PDF

Extended Adaptively Sampled Distance Fields Method for Rendering Implicit Surfaces with Sharp Features (음함수 곡면의 날카로운 형상 가시화를 위한 확장 Adaptively Sampled Distance Fields 방법)

  • Cha J.H.;Lee K.Y.;Kim T.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.27-39
    • /
    • 2005
  • Implicit surfaces are geometric shapes which are defined by implicit functions and exist in three-dimensional space. Recently, implicit surfaces have received much attention in solid modeling applications because they are easy to represent the location of points and to use boolean operations. However, it is difficult to chart points on implicit surfaces for rendering. As efficient rendering method of implicit surfaces, the original Adaptively Sampled Distance Fields (ADFs) $method^{[1]}$ is to use sampled distance fields which subdivide the three dimensional space of implicit surfaces into many cells with high sampling rates in regions where the distance field contains fine detail and low sampling rates where the field varies smoothly. In this paper, in order to maintain the sharp features efficiently with small number of cells, an extended ADFs method is proposed, applying the Dual/Primal mesh optimization $method^{[2]}$ to the original ADFs method. The Dual/Primal mesh optimization method maintains sharp features, moving the vertices to tangent plane of implicit surfaces and reconstructing the vertices by applying a curvature-weighted factor. The proposed extended ADFs method is applied to several examples of implicit surfaces to evaluate the efficiency of the rendering performance.

Multiscale Implicit Functions for Unified Data Representation

  • Yun, Seong-Min;Park, Sang-Hun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2374-2391
    • /
    • 2011
  • A variety of reconstruction methods has been developed to convert a set of scattered points generated from real models into explicit forms, such as polygonal meshes, parametric or implicit surfaces. In this paper, we present a method to construct multi-scale implicit surfaces from scattered points using multiscale kernels based on kernel and multi-resolution analysis theories. Our approach differs from other methods in that multi-scale reconstruction can be done without additional manipulation on input data, calculated functions support level of detail representation, and it can be naturally expanded for n-dimensional data. The method also works well with point-sets that are noisy or not uniformly distributed. We show features and performances of the proposed method via experimental results for various data sets.

A GENERAL FIXED POINT THEOREM IN FUZZY METRIC SPACES VIA AN IMPLICIT FUNCTION

  • Imdad, M.;Ali, Javid
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.591-603
    • /
    • 2008
  • We employ the notion of implicit functions to prove a general common fixed point theorem in fuzzy metric spaces besides adopting the idea of R-weak commutativity of type (P) in fuzzy setting. In process, several previously known results are deduced as special cases to our main result.

  • PDF

Automatic Generation of the Input Data for Rapid Prototyping from Unorganized Point Cloud Data (임의의 점 군 데이터로부터 쾌속조형을 위한 입력데이터의 자동생성)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.144-153
    • /
    • 2007
  • In order to generate the input data for rapid prototyping, a new approach which is based on the implicit surface interpolation method is presented. In the method a surface is reconstructed by creating smooth implicit surface from unorganized cloud of points through which the surface should pass. In the method an implicit surface is defined by the adaptive local shape functions including quadratic polynomial function, cubic polynomial function and RBF(Radial Basis Function). By the reconstruction of a surface, various types of error in raw STL file including degenerated triangles, undesirable holes with complex shapes and overlaps between triangles can be eliminated automatically. In order to get the slicing data for rapid prototyping an efficient intersection algorithm between implicit surface and plane is developed. For the direct usage for rapid prototyping, a robust transformation algorithm for the generation of complete STL data of solid type is also suggested.

Subject Independent Classification of Implicit Intention Based on EEG Signals

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.12-16
    • /
    • 2016
  • Brain computer interfaces (BCI) usually have focused on classifying the explicitly-expressed intentions of humans. In contrast, implicit intentions should be considered to develop more intelligent systems. However, classifying implicit intention is more difficult than explicit intentions, and the difficulty severely increases for subject independent classification. In this paper, we address the subject independent classification of implicit intention based on electroencephalography (EEG) signals. Among many machine learning models, we use the support vector machine (SVM) with radial basis kernel functions to classify the EEG signals. The Fisher scores are evaluated after extracting the gamma, beta, alpha and theta band powers of the EEG signals from thirty electrodes. Since a more discriminant feature has a larger Fisher score value, the band powers of the EEG signals are presented to SVM based on the Fisher score. By training the SVM with 1-out of-9 validation, the best classification accuracy is approximately 65% with gamma and theta components.

DEVELOPMENT OF AN HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차 정확도의 내재적 불연속 갤러킨 기법의 개발)

  • Lee, H.D.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.29-40
    • /
    • 2007
  • An implicit discontinuous Galerkin method for the two-dimensional Euler equations was developed on unstructured triangular meshes. The method can achieve high-order spatial accuracy by using hierachical basis functions based on Legendre polynomials. Numerical tests were conducted to estimate the convergence order of numerical solutions to the Ringleb flow and the supersonic vortex flow for which analytic solutions are available. Also, the flows around a 2-D circular cylinder and an NACA0012 airfoil were numerically simulated. The numerical results showed that the implicit discontinuous Galerkin methods couples with a high-order representation of curved solid boundaries can be an efficient method to obtain very accurate numerical solutions on unstructured meshes.

DEVELOPMENT OF IMPLICIT DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 내재적 불연속 갤러킨 기법의 개발)

  • Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.30-40
    • /
    • 2007
  • The implicit discontinuous Galerkin method for the two-dimensional Euler equations was developed on unstructured triangular meshes, which can achieve higher-order accuracy by wing hierachical basis functions based on Legendre polynomials. Numerical tests were conducted to estimate the convergence order of numerical solutions to the Ringleb flow and the supersonic vortex flow for which analytic solutions are available. And, the flows around a circle and a NACA0012 airfoil was also numerically simulated. Numerical results show that the implicit discontinuous Galerkin methods with higher-order representation of curved solid boundaries can be an efficient higher-order method to obtain very accurate numerical solutions on unstructured meshes.

  • PDF

A Double Z-buffer Antialiasing Method for Voxelized Implicit Surfaces (복셀로 표현된 임플리시트 곡면을 위한 시프트(shifted) 더블 Z-버퍼 앤티 앨리어싱)

  • 김학란;박화진
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.44-53
    • /
    • 2004
  • This paper aims at presenting high quality at low resolution apply by a new antialiasing method for voxelized implicit surfaces. Implicit surfaces create a unique type of 3D-modeling. Some use of implicit surfaces are scientific and medical visualization, animation, medical simulation and interactive modeling. One of previous antialiasing methods for implicit surfaces presented by raytracing or texture mapping is making use of a stochastic sampling. But this method requires more calculation time and costs which is caused by complicated and difficult implicit functions. In the meanwhile, voxelized implicit surfaces generally use high resolution for good quality images but it costs to generate. In order to this problem, this paper suggests a shifted double Z-buffer which is very simple, more efficient and easy. Tn addition, there are applied box-filter and tent-filter to the double Z-buffer antialiasing method for better images. For results this method generate high quality image and it is easy to apply to various filters and is able to extend to multi Z-buffer.

  • PDF