• Title/Summary/Keyword: implant position

Search Result 283, Processing Time 0.032 seconds

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS ON THE MANDIBULAR CANTILEVERED PROSTHESIS SUPPORTED BY IMPLANTS (임프란트로 지지된 하악 켄티레버 보철물의 3차원 유한요소 분석)

  • Cho, Chul;Shin, Sang-Wan;Kwon, Jong-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.724-743
    • /
    • 2000
  • One of the biggest clinical problems of osseointegrated implant prosthesis is the excessive stress caused by bite forces which are transfered directly into the bone through the osseointegrated implant fixtures. So several biodynamic problems occur when there is an excessive fatigue stress. The factors of stress distribution are the number, kind, position, arrangement of the implants, and the distance between the implants, and the kind, quality of superstructure prosthesis and connection type between the rest implant and the superstructure. Recently, a distal short additional implant, socalled rest implant, is employed to reduced the stresses in conventional cantilevered prostheses. This study was undertaken to analyze the stresses transfered by osseointegrated implant cantilevered prostheses depending upon the number and the position of implants, the presence of rest implant, and the type of their connection. Three dimensional finite element analysis was attempted using ANSIS ver. 5.3 program under IBM INDIGO computer. The results were as follows : 1. The rest implant influenced on the pattern of stress distribution on the anterior area of the mandible and the superstructure. 2. In the group employing the rest implants, the fixed type of connection between the rest implant and the superstructure was more stable than the ball attachment type on the stress distribution. 3. In the group employing the ball attachment between the rest implant and the superstructure, the case with 4-implants(on canine, premolar) was little more stable than the case with 6-implants and the case with 4-implants(on incisor, premolar) on the stress distribution. 4. In the cantilevered group, the case with 4-implants(on incisor, premolar) and the case with 6-implants were more stable than the case with 4-implants(on canine, premolar) on the stress distribution. 5. In all of the group, the case with 6-implants and the fixed type of connection was the most stable and the case with 4-implants (on canine, premolar) was the most unstable on the stress distribution.

  • PDF

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND DEFORMATION IN MANDIBLE ACCORDING TO THE POSITION OF PONTIC IN TWO IMPLANTS SUPPORTED THREE-UNIT FIXED PARTIAL DENTURE (두 개의 임플란트를 이용한 3본 고정성 국소의치에서 가공치 위치에 따른 하악골에서의 응력 분포 및 변형에 관한 삼차원 유한요소법적 연구)

  • Kim, Dong-Su;Kim, Il-Kyu;Jang, Keum-Soo;Park, Tae-Hwan;Kim, Kyu-Nam;Son, Choong-Yul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.166-179
    • /
    • 2008
  • Excessive concentration of stress which is occurred in occlusion around the implant in case of the implant supported fixed partial denture has been known to be the main cause of the crestal bone destruction. Therefore, it is essential to evaluate the stress analysis on supporting tissue to get higher success rates of implant. The purpose of this study was to evaluate the effects of stress distribution and deformation in 3 different types of three-unit fixed partial denture sup-ported by two implants, using a three dimensional finite element analysis in a three dimensional model of a whole mandible. A mechanical model of an edentulous mandible was generated from 3D scan, assuming two implants were placed in the left premolars area. According to the position of pontic, the experiments groups were divided into three types. Type I had a pontic in the middle position between two implants, type II in the anterior posi-tion, and type III in the posterior position. A 100-N axial load was applied to sites such as the central fossa of anterior and posterior implant abutment, central fossa of pontic, the connector of pontic or the connector between two implants, the mandibular boundary conditions were modeled considering the real geometry of its four-masticatory muscular supporting system. The results obtained from this study were as follows; 1. The mandible deformed in a way that the condyles converged medially in all types under muscular actions. In comparison with types, the deformations in the type II and type III were greater by 2-2.5 times than in the type I regardless of the loading location. 2. The values of von Mises stresses in cortical and cancellous bone were relatively stable in all types, but slightly increased as the loading position was changed more posteriorly. 3. In comparison with type I, the values of von Mises stress in the implant increased by 73% in Type II and by 77% in Type III when the load was applied anterior and posterior respectively, but when the load was applied to the middle, the values were similar in all types. 4. When the load was applied to the centric fossa of pontic, the values of von Mises stress were nearly $30{\sim}35%$ higher in the type III than type I or II in the cortical and cancellous bone. Also, in the implant, the values of von Mises stress of the type II or III were $160{\sim}170%$ higher than in the type I. 5. When the load was applied to the centric fossa of implant abutment, the values of von Mises stress in the cortical and cancellous bone were relatively $20{\sim}25%$ higher in the type III than in the other types, but in the implant they were 40-45% higher in the type I or II than in the type III. According to the results of this study, musculature modeling is important to the finite element analysis for stress distribution and deformation as the muscular action causes stress concentration. And the type I model is the most stable from a view of biomechanics. Type II is also a clinically accept-able design when the implant is stiff sufficiently and mandibular deformation is considered. Considering the high values of von Mises stress in the cortical bone, type III is not thought as an useful design.

Rehabilitation of a patient with crossed occlusion using mandibular implant-supported fixed and maxillary Kennedy class IV removable dental prostheses: A case report (엇갈린 교합 환자의 임플란트 지지 고정성 보철물과 Kennedy class IV 가철성 국소의치를 이용한 수복 증례)

  • Kang, Seok-Hyung;Han, Jung-Suk;Kim, Sung-Hun;Yoon, Hyung-In;Yeo, In-Sung
    • The Journal of the Korean dental association
    • /
    • v.55 no.12
    • /
    • pp.842-849
    • /
    • 2017
  • The term, 'crossed occlusion' implies clinical situation in which the residual teeth in one arch have no contact with those in the antagonistic arch, resulting in the collapse of occlusal vertical dimension. The treatment goal of this pathologic condition is restoration of the collapsed vertical dimension and stabilization of abnormal mandibular position. Previously, konus removable prostheses or tooth supported overdentures were suggested to solve crossed occlusion. Nowadays, dental implants have been used for definitive support to solve this problem. In this case report, a 65 years old female patient had a crossed occlusion, in which the maxillary posterior residual teeth and mandibular anterior residual teeth cross. Interim removable and fixed dental prostheses were used to confirm the proper vertical and horizontal jaw relation. After that, the mandibular posterior edentulous region was restored with implant-supported fixed dental prostheses. Computer tomography guided implant surgery was performed according to the concept of the restoration-driven implant placement. The maxillary anterior edentulous region was restored with Kennedy class IV removable prosthesis, considering the patient's economic status. The patient's jaw position and prostheses have been well maintained at the follow-up after 6 months of definitive restoration. The antero-posterior crossed occlusion problems appeared to be effectively solved with the combination of removable in one arch and implant-supported fixed prostheses in the other.

  • PDF

Clinical and radiographic evaluations of implants as surveyed crowns for Class I removable partial dentures: A retrospective study

  • Yoo, Soo-Yeon;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.108-121
    • /
    • 2022
  • PURPOSE. The purpose of this study was to evaluate survival rates and marginal bone loss (MBL) of implants in IC-RPDs. MATERIALS AND METHODS. Seventy implants were placed and used as surveyed crowns in 30 RPDs. The survival rates and MBL around implants based on multiple variables, e.g., position, sex, age, opposing dentitions, splinting, type of used retainer, and first year bone loss, were analyzed. Patient reported outcome measures (PROMs) regarding functional/esthetic improvement after IC-RPD treatment, and complications were also inspected. RESULTS. The 100% implant survival rates were observed, and 60 of those implants showed MBL levels less than 1.5 mm. No significant differences in MBL of implants were observed between implant positions (maxilla vs. mandible; P = .341) and type of used retainers (P = .630). The implant MBL of greater than 0.5 mm at 1 year showed significantly higher MBL after that (P < .001). Splinted implant surveyed crowns showed lower MBL in the maxilla (splinted vs. non-splinted; P = .037). There were significant esthetic/functional improvements observed after treatment, but there were no significant differences in esthetic results based on implant position (maxilla vs. mandible). Implants in mandible showed significantly greater improvement in function than implants in the maxilla (P = .002). Prosthetic complication of IC-RPD was not observed frequently. However, 2 abutment teeth among 60 were failed. The bone loss of abutment teeth was lower than MBL of implants in IC-RPDs (P = .001). CONCLUSION. Class I RPD connected to residual teeth and strategically positioned implants as surveyed crowns can be a viable treatment modality.

Comparison of accuracy between digital and conventional implant impressions: two and three dimensional evaluations

  • Bi, Chuang;Wang, Xingyu;Tian, Fangfang;Qu, Zhe;Zhao, Jiaming
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.236-249
    • /
    • 2022
  • PURPOSE. The present study compared the accuracy between digital and conventional implant impressions. MATERIALS AND METHODS. The experimental models were divided into six groups depending on the implant location and the scanning span. Digital impressions were captured using the intraoral optical scanner TRIOS (3Shape, Copenhagen, Denmark). Conventional impressions were taken with the monophase impression material based on addition-cured silicones, Honigum-Mono (DMG, Hamburg, Germany). A high-precision laboratory scanner D900 (3Shape, Copenhagen, Denmark) was used to obtain digital data of resin models and stone casts. Surface tessellation language (STL) datasets from scanner were imported into the analysis software Geomagic Qualify 14 (3D Systems, Rock Hill, SC, USA), and scan body deviations were determined through two-dimensional and three-dimensional analyses. Each scan body was measured five times. The Sidak t test was used to analyze the experimental data. RESULTS. Implant position and scanning distance affected the impression accuracy. For a unilateral arch implant and the mandible models with two implants, no significant difference was observed in the accuracy between the digital and conventional implant impressions on scan bodies; however, the corresponding differences for trans-arch implants and mandible with six implants were extremely significant (P<.001). CONCLUSION. For short-span scanning, the accuracy of digital and conventional implant impressions did not differ significantly. For long-span scanning, the precision of digital impressions was significantly inferior to that of the traditional impressions.

Early implant failure: a retrospective analysis of contributing factors

  • Kang, Dae-Young;Kim, Myeongjin;Lee, Sung-Jo;Cho, In-Woo;Shin, Hyun-Seung;Caballe-Serrano, Jordi;Park, Jung-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.287-298
    • /
    • 2019
  • Purpose: The aim of this retrospective study was to determine the prevalence of early implant failure using a single implant system and to identify the factors contributing to early implant failure. Methods: Patients who received implant treatment with a single implant system ($Luna^{(R)}$, Shinhung, Seoul, Korea) at Dankook University Dental Hospital from 2015 to 2017 were enrolled. The following data were collected for analysis: sex and age of the patient, seniority of the surgeon, diameter and length of the implant, position in the dental arch, access approach for sinus-floor elevation, and type of guided bone regeneration (GBR) procedure. The effect of each predictor was evaluated using the crude hazard ratio and the adjusted hazard ratio (aHR) in univariate and multivariate Cox regression analyses, respectively. Results: This study analyzed 1,031 implants in 409 patients, who comprised 169 females and 240 males with a median age of 54 years (interquartile range [IQR], 47-61 years) and were followed up for a median of 7.2 months (IQR, 5.6-9.9 months) after implant placement. Thirty-five implants were removed prior to final prosthesis delivery, and the cumulative survival rate in the early phase at the implant level was 95.6%. Multivariate regression analysis revealed that seniority of the surgeon (residents: aHR=2.86; 95% confidence interval [CI], 1.37-5.94) and the jaw in which the implant was placed (mandible: aHR=2.31; 95% CI, 1.12-4.76) exerted statistically significant effects on early implant failure after adjusting for sex, age, dimensions of the implant, and type of GBR procedure (preoperative and/or simultaneous) (P<0.05). Conclusions: Prospective studies are warranted to further elucidate the factors contributing to early implant failure. In the meantime, surgeons should receive appropriate training and carefully select the bone bed in order to minimize the risk of early implant failure.

FINITE ELEMENT STRESS ANALYSIS OF MAXILLARY TWO IMPLANTS-RETAINED OVERDENTURE ACCORDING TO POSITION OF IMPLANT FIXTURES (상악피개의치를 위한 임플랜트의 위치에 따른 응력분포에 대한 유한요소분석)

  • Ha, Heon-Seok;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.193-200
    • /
    • 2008
  • Statement of problem: There have been a few studies about unsplinted implant retainted maxillary overdenture. Purpose: The purpose of this study was to examine the effect of different position of implant for 2 implants-retained maxillary overdenture. Materials and methods: Three-dimensional finite element models were used to reproduce an edentulous human maxilla with an implant-retained overdenture. Two implants in the canine tooth positions on both side and in the second premolar tooth positions on both side models were examined. Axial loads of 100 N were applied to the occlusal surface at the right first molar tooth positions. Maximum stress at the implant-bone interface and stress at the cortical bone surface just under the loading point were observed. Results and conclusion: Within the limits of this study, maximum stresses were concentrated around implant of canine position at loading side. The second premolar area was thought to be more favorable to distribution of stress on mucosa, alveolar bone and implants than canine area for maxillary overdenture.

Planning of Multiple Tooth Implant Placement Using the Standardized Data in Teeth Size and Position (표준 치아 크기 및 배열 정보를 이용한 다중 치아 임플란트 식립계획 방안)

  • Park, Hyung-Wook;Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.348-356
    • /
    • 2015
  • It is important to devise methods for assisting dentists to consistently determine implant positions and directions and to accurately perform drilling tasks during dental implant surgery. In this paper, we propose a novel approach to tooth implant placement planning which deals with the determination of the positions and directions of multiple implant fixtures for a set of missing mandibular teeth and suggests the selection of the sizes and types of the implant fixtures. We combine Korean standard data in the sizes and positions of human teeth with the patient specific 3D models of mandibular jawbones, nerve curves, and neighboring teeth around the missing teeth in order to determine the positions and directions of the implant fixtures for the missing teeth. Using the geometric and spatial information of the jawbones, the teeth and the implant fixtures, we can construct the 3D models of surgical guide stents which are crucial to perform drilling tasks with ease and accuracy. Adopted in 3D simulation of dental implant placement, the approach can provide surgeon students with good educational contents. We also expect that, with further work, the approach can be used as a useful tool to plan for dental implant surgery.

A comparison of the implant stability among various implant systems: clinical study

  • Kim, Jae-Min;Kim, Sun-Jong;Han, In-Ho;Shin, Sang-Wan;Ryu, Jae-Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • PURPOSE. To determine the change in stability of single-stage, three different design of implant systems in humans utilizing resonance frequency analysis for early healing period(24 weeks), without loading. MATERIAL AND METHODS. Twenty-five patients were included into this study. A total of 45 implants, three different design of implant systems(group A,C,R) were placed in the posterior maxilla or mandible. The specific transducer for each implant system was used. ISQ(implant stability quotient) reading were obtained for each implant at the time of surgery, 3, 6, 8, 10, 12, 24 weeks postoperatively. Data were analyzed for different implant type, bone type, healing time, anatomical locations. RESULTS. For each implant system, a two-factor mixed-model ANOVA demonstrated that a significant effect on ISQ values(group A=0.0022, C=0.017, R=0.0018). For each implant system, in a two-factor mixed model ANOVA, and two-sample t-test, the main effect of jaw position(P > .005) on ISQ values were not significant. CONCLUSIONS. All the implant groups A, C and R, the change patterns of ISQ over time differed by bone type. Implant stability increased greatly between week 0 and week six and showed slow increase between week six and six months(plateau effect).