• Title/Summary/Keyword: implant fixture diameter

Search Result 68, Processing Time 0.026 seconds

Histomorphometry and Stability Analysis of Loaded Implants with two Different Surface Conditions in Beagle Dogs (하중을 가한 두 가지 표면의 임플란트에 관한 조직형태학적 분석 및 안정성 분석 (비글견을 이용한 연구))

  • Kim, Sang-Mi;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.337-349
    • /
    • 2008
  • Despite an improved bone reactions of Mg-incorporated implants in the animals, little yet has been carried out by the experimental investigations in functional loading conditions. This study investigated the clinical and histologic parameters of osseointegrated Mg-incorporated implants in delayed loading conditions. A total of 36 solid screw implants (diameter 3.75 mm, length 10mm) were placed in the mandibles of 6 beagle dogs. Test groups included 18 Mg-incorporated implants. Turned titanium Implants served as control. Gold crowns were inserted 3 months. Radiographic assessments and stabilitytests were performed at the time of fixture installation, $2^{nd}$ stage surgery, 1 and 3 months after loading. Histological observations and morphometrical measurements were also performed. Of 36 implants, 32 displayed no discernible mobility, corresponding to successful clinical function. There was no statistically significant difference between test implants and controls in marginal bone levels (p=0.413) and RFA values. The mean BIC % in the Mg-implants was $54.4{\pm}20.2%$. The mean BIC % in the turned implant was $48.9{\pm}8.0%$. These differences between the Mg-implant and control implant were not statistically significant (P=0.264). In the limitation of this study, bone-to-implant contact (BIC) and bone area of Mg-incorporated oxidized implant were similar to machine-turned implant. The stability analysis showed no significantly different ISQ values and marginal bone loss between two groups. Considering time-dependent bone responses of Mg-implant, it seems that Mg-implants enhanced bone responses in early loading conditions and osseointegrated similarly to cp Ti implants in delayed loading conditions. However, further investigations are necessary to obtain long-term bone response of the Mg-implant in human.

Low-level laser therapy affects osseointegration in titanium implants: resonance frequency, removal torque, and histomorphometric analysis in rabbits

  • Kim, Jong-Ryoul;Kim, Sung-Hee;Kim, In-Ryoung;Park, Bong-Soo;Kim, Yong-Deok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.1
    • /
    • pp.2-8
    • /
    • 2016
  • Objectives: The purpose of this study was to investigate the effects of low-level laser therapy (LLLT) with a diode gallium-aluminum-arsenide (Ga-Al-As) low-level laser device on the healing and attachment of titanium implants in bone. Materials and Methods: Thirteen New Zealand white male rabbits weighing $3.0{\pm}0.5kg$ were used for this study. Dental titanium implants (3.75 mm in diameter and 8.5 mm in length, US II RBM plus fixture; Osstem, Seoul, Korea) were implanted into both femurs of each rabbit. The rabbits were randomly divided into a LLLT group and a control group. The LLLT was initiated immediately after surgery and then repeated daily for 7 consecutive days in the LLLT group. Six weeks and 12 weeks after implantation, we evaluated and compared the osseointegration of the LLLT group and control group, using histomorphometric analysis, removal torque testing, and resonance frequency analysis (RFA). The results were statistically significant when the level of probability was 0.05 or less based on a non-parametric Mann-Whitney U-test. Results: The implant survival rate was about 96%. Histologically and histomorphometrically, we observed that the titanium implants were more strongly attached in LLLT group than in control group. However, there was no significant difference between the LLLT group and control group in removal torque or RFA. Conclusion: Histologically, LLLT might promote cell-level osseointegration of titanium implants, but there was no statistically significant effects.

A Study on the Stress Distribution of Condylar Region and Edentulous Mandible with Implant-Supported Cantilever Fixed Prostheses by using 3-Dimensional Finite Element Method (임플란트 지지 캔틸레버 고정성 보철물 장착시 과두와 하악골의 응력 분포에 관한 3차원 유한요소법적 연구)

  • Kim, Yeon-Soo;Lee, Sung-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.283-305
    • /
    • 2001
  • The purpose of this study was to analyze the stress distribution of condylar regions and edentulous mandible with implant-supported cantilever prostheses on the certain conditions, such as amount of load, location of load, direction of load, fixation or non-fixation on the condylar regions. Three dimensional finite element analysis was used for this study. FEM model was created by using commercial software, ANSYS(Swanson, Inc., U.S.A.). Fixed model which was fixed on the condylar regions was modeled with 74323 elements and 15387 nodes and spring model which was sprung on the condylar regions was modeled with 75020 elements and 15887 nodes. Six Br${\aa}$nemark implants with 3.75 mm diameter and 13 mm length were incorporated in the models. The placement was 4.4 mm from the midline for the first implant; the other two in each quardrant were 6.5 mm apart. The stress distribution on each model through the designed mandible was evaluated under 500N vertical load, 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. The load points were at 0 mm, 10 mm, 20 mm along the cantilever prostheses from the center of the distal fixture. The results were as follows; 1. The stress distribution of condylar regions between two models showed conspicuous differences. Fixed model showed conspicuous stress concentration on the condylar regions than spring model under vertical load only. On the other hand, spring model showed conspicuous stress concentration on the condylar regions than fixed model under 250N horizontal load linguobuccally, buccal 20 degree 250N oblique load and buccal 45 degree 250N oblique load. 2. Fixed model showed stress concentration on the posterior and mesial side of working and balancing condylar necks but spring model showed stress concentration on the posterior and mesial side of working condylar neck and the posterior and lateral side of balancing condylar neck under vertical load. 3. Fixed model showed stress concentration on the posterior and lateral side of working condylar neck and the anterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior sides of working and balancing condylar necks under horizontal load linguobuccally. 4. Fixed model showed stress concentration on the posterior side of working condylar neck and the posterior and lateral side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 20 degree oblique load. 5. Fixed model showed stress concentration on the anterior and lateral side of working condylar neck and the posterior and mesial side of balancing condylar neck but spring model showed stress concentration on the anterior side of working condylar neck and the anterior and lateral side of balancing condylar neck under buccal 45 degree oblique load.. 6. The stress distribution of bone around implants between two models revealed difference slightly. In general, magnitude of Von Mises stress was the greatest at the bone around the most distal implant and the progressive decrease more and more mesially. Under vertical load, the stress values were similar between implant neck and superstructure vertically, besides the greatest on the distal side horizontally. 7. Under horizontal load linguobuccally, buccal 20 degree oblique load and buccal 45 degree oblique load, the stress values were the greatest on the implant neck vertically, and great on the labial and lingual sides horizontally. After all, it was considered that spring model was an indispensable condition for the comprehension of the stress distributions of condylar regions.

  • PDF

The influence of iatrogenic mobilization in the initial stage of implant installation on final osteointegration (임플란트 식립 초기 의원성 동요가 최종 골결합에 미치는 영향)

  • Kwak, Myeong-Bae;Cho, Jin-Hyun;Lee, Du-Heong;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.105-112
    • /
    • 2014
  • Purpose: The aim of present investigation was to find out the influence of several times iatrogenic mobilization in the initial stage of implant installation on bone-implant osteointegration. Materials and methods: The experimental implants (3.75 mm in diameter, 8.0 mm in length) were made of commercially pure (Grade IV) titanium, and were treated with RBM ($MegaGen^{(R)}$: Ca-P) on lower 4.0 mm part. Only lower part of implant was inserted to bone and the implants were nonsubmerged. The 130 implants (two in each tibia) were inserted into the monocortical tibias of 33 rabbits which each weighed more than 3.5 kg (Female, New Zealand White). According to the removal torque interval, the groups were divided into 13 groups, group I (1 day), group II (1 day + 2 days), group III (1 day + 2 days + 3 days), group IV (1 day + 2 days + 3 days + 4 days), group V (2 days), group VI (2 days + 4 days), group VII (2 days + 4 days + 6 days), group VIII (2 days + 4 days + 6 days + 8 days), group IX (4 days), group X (4 days + 7 days), group XI (4 days + 7 days + 10 days), group XII (4 days + 7 days + 10 days + 14 days) and control group. In the control group, the removal torque was measured at 8 weeks with a digital torque gauge (Mark-10, USA). In the experimental groups, the removal torque was given once, twice, three times or four times by experiment design before the final removal torque and the value was measured each time. The implants were then screwed back to their original positions. All the experimental groups were given a final healing time of 8 weeks after placement, in which values were compared with the control groups and the 1st, 2nd, 3rd or 4th removal torque values in each experimental group. Results: In comparison of the final removal torque tests among experimental groups, the removal torque value of experimental groups except group XII were not statistically different that of control group. And the values of group I and II were significantly higher than the values of group VI, VIII, X, XI, and XII. In addition, the values of group III, IV, and V were significantly higher than group XI and XII. In comparison of the removal torque in the each experimental group, the final removal torque were significantly higher in all groups except group VIII, X, XI, and XII. Conclusion: If sufficient healing time was allowed, a few mobilization of fixture at the very early stage after the implant placement in the rabbits didn't interrupt the final bone to implant osseointegration.

A multicenter clinical study of installed US II Plus/GS II Osstem implants after bone graft (골 이식술 후 Osstem Implant (US II Plus/GS II)의 다기관 임상연구)

  • Chung, Kwang;Oh, Chul-Jung;Ha, Ji-Won;Kook, Min-Suk;Park, Hong-Ju;Oh, Hee-Kyun;Kim, Su-Gwan;Kim, Young-Kyun;Kim, Woo-Cheol
    • The Journal of the Korean dental association
    • /
    • v.50 no.12
    • /
    • pp.743-754
    • /
    • 2012
  • urpose : The purpose of this study was to evaluate the US II plus/GS II Osstem$^{(R)}$ implants through the study for the clinical success rate during the installation of the Osstem¢Á implants after bone graft. Materials and Methods : This study was researched in the 4 medical institutions: Chonnam National University, Chosun University, Bundang Seoul National University Hospital, and FM dental clinic from May, 2002 to September, 2009. Based on the total number of 60 patients whose treatment was the installation of the US II plus/GS II Osstem¢Á implants after bone graft, we evaluated success rate of implants. We analysis the distribution of patient's age and gender, edentulous area, bone type, fixture length and diameter, installation and loading time, donor site, bone graft material and method, antagonistic teeth, and survival and success rate. From these analyses we got the following results. Results : 1. In this study, the total number of patients who have been installed with US II plus implant was 27, and total of 52 implants were installed. The average age was 38.9, with 16 male, and 11 female patients. 2. The total number of patients who have been installed with GS II implant was 33, and total of 54 implants were installed. The average age was 49.7, with 24 male, and 9 female patients. 3. As for bone graft method, either autogenous bone or a mix of autogenous and heterogenous bone was used(88.4%) for US II plus. Chin, iliac, and Maxillary tuberosity were the donor sites for autogenous bone graft, and onlay method of bone graft was performed. 4. Allogenic bone or a mix of autogenous and heterogenous bone was used(77.8%) for GS II. Chin, ramus, and tibia were the donor sites for autogenous bone graft, and GBR method of bone graft was performed. 5. The duration from the installation of implants to setting of final prosthesis was average of 16 months and 10 months for US II plus and GS II respectively. Also, the final follow up period was average of 31 months and 28 months respectively. During this period, one GS II implant was removed from 1 patient due to failure of early osteointegration. 6. The survival rates were 100% and 98.1%, and success rates were 94.2% and 94.4% for US II plus and GS II implant respectively. Conclusion : On the evaluation of our clinical study, both US II plus and GS II Osstem¢Á implants showed the excellent clinical results after bone graft.

Study of the re-osseointegration of implant fixture after mechanical unscrewing (임플란트 고정체의 의원성 동요 후 골 유착 반응에 관한 연구)

  • Jang, Ji-Hoon;Cho, Jin-Hyun;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.209-214
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate whether the re-osseointegration of the implants that had mechanical unscrewing possibly occurred or not. Furthermore, if it happened, the degree of re-osseointegration was evaluated by comparing with previous osseointegration. Materials and methods: The smooth implant (commercial pure titanium 99%) specimens, whose diameter and length was 3.75 mm, 4 mm, respectively were produced. Two implants were inserted into each tibia of 7 New Zealand female white rabbits weighing at least 3.0 kg. The torque removal force for each implant after 6 weeks of implants placement was measured and included in group I. The torque removal forces were assessed after the fixtures were re-screwed to original position and the subjects were allowed to have 4 more weeks for healing and included in group II. One rabbit was sacrificed after first measurement and produced 4 slide specimens in group I, and two rabbits were sacrificed after 2nd measurement, 7 slide specimens, in group II for histomorphologic investigations. All slide specimens were assessed based on the proportion of BIC (bone-implant contact) as well as CBa (Bone area in the cortical passage) value produced by counting the screw threads embedded in the compact bones under the optical microscopic analysis (${\times}20$). Statistical analysis was conducted to evaluate the torque removal force, BIC and CBa between group I and II. Results: As for the torque removal force, the result was $10.8{\pm}3.6$ Ncm for group I and $20.2{\pm}9.7$ Ncm for group II. Furthermore, the torque removal force of group II increased by 98.1% in average compared to group I (P<.05). On the other hand, histomorphologic analysis displayed that there was no statistical significance in BIC and CBa values between group I and the group II (P>.05), and RT/BIC and RT/CBa between group I and group II were statistically significant (P<.05). Conclusion: It is possible to obtain more substantial re-osseointegration within shorter periods than the period needed for the initial osseointegration in case of iatrogenically unscrewed implants.

Effect of immobilization of the recombinant human bone morphogenetic protein 2 (rhBMP-2) on anodized implants coated with heparin for improving alveolar ridge augmentation in beagle dogs: Radiographic observations (양극산화 임플란트 표면에 적용된 헤파린과 골형성단백질(rhBMP-2)이 치조골 증대에 미치는 효과: 방사선학적 평가)

  • Lee, So-Hyoun;Jo, Jae-Young;Yun, Mi-Jung;Jeon, Young-Chan;Huh, Jung-Bo;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate the effect of immobilization of the recombinant human bone morphogenetic protein 2 (rhBMP-2) on anodized titaum implants coated with heparin to enhance the vertical alveolar ridge augmentation in the supraalveolar peri-implant defect region. Materials and methods: 18 pure titanium implants (7.0 mm in length, 3.5 mm in diameter) were manufactured for this study. All implants were anodized and designed insertion reference line marked with laser at the apical 2.5 mm from the fixture platform. Implantation of 6 noncoated anodized implants (Control group), 6 anodized implants physically adsorbed with rhBMP-2 by dip and dry method (BMP group) and 6 anodized implants chemically immobilized 3,4-dihydroxyphenylalanine (DOPA)-heparin/ rhBMP-2 (Hep-BMP group) was performed in the both mandibular of three male adult beagle dogs using split-mouth design. Radiologic examinations were performed immediately after implant placement and 4 and 8 weeks after implant placement. The amount of mesio-distal bone augmentation was evaluated by measuring the vertical distance from the platform to the marginal bone. Statistical analysis was performed using one-way analysis of variance (SPSS version 18.0) and multiple comparison analysis of The Kruskal-Wallis test and the Mann-Whitney U test. Statistical significance was established at the 5% significant level. Results: At the 4 weeks vertical alveolar ridge augmentation of Control group, BMP group and Hep-BMP group is $0.09{\pm}0.22mm$, $1.02{\pm}0.72mm$, and $1.29{\pm}0.51mm$, At the 8 weeks $0.11{\pm}1.26mm$, $1.11{\pm}0.58mm$, $1.59{\pm}0.79mm$ according to radiographic observations. The two experimental groups showed a significantly increasing in vertical bone height compared with the control group (P<.05). However, there is no significant difference between the BMP group and Hep-BMP group (P>.05). Conclusion: The rhBMP-2 coated implants were enhanced the vertical bone growth in the supraalveolar peri-implant defect area. However, there is no significant difference between chemically and physically coating method.

The influence of intentional mobilization of implant fixtures before osseointegration (골유착전 임플란트 고정체의 의원성 동요가 골결합에 미치는 영향)

  • Cho, Jin-Hyun;Jo, Kwang-Heon;Cho, Sung-Am;Lee, Kyu-Bok;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.149-155
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the influence of mobilization on bone-implant interface prior to osseointegration of fixtures. Materials and methods: The experimental implants (3.75 mm in diameter, 4.0 mm in length) were made of commercially pure (Grade IV) titanium, and were treated with RBM ($MegaGen^{(R)}$: Ca-P). The 80 implants (two in each tibia) were inserted into the monocortical tibias of 20 rabbits which each weighed more than 3.5 kg (Female, New Zealand White). According to the removal torque interval, the groups were divided into 10 groups, Group I (6 wks), Group II (4 days+6 wks), Group III (4 days+1 wk+6 wks), Group IV (1 wk+6 wks), Group V (1 wk+1 wk+6 wks), Group VI (2 wks+6 wks), Group VII (2 wks+ 1 wk+6 wk), Group VIII (3 wks+6 wks), Group IX (3 wks+1 wk+6 wks) and Group X (10 wks). The control groups were Group I and X, the removal torque was measured at 6 wks and 10 wks with a digital torque gauge (Mark-10, USA). In the experimental groups, the removal torque was given once or twice before the final removal torque and the value was measured each time. After which, the implants were put back where they had been except the control groups. All the experimental groups were given a final healing time (6 wks) before the final removal torque test, in which values were compared with the control groups and the 1st and/or 2nd removal torque values in each experimental group. Results: In the final removal torque tests, the removal torque value of Group X (10 wks) was higher than that of Group I (6 wks) in the control groups but not statistically different. There were no significant differences between the experimental groups and control groups (P>.05). In the first removal torque comparison, the experimental groups (4 days or 1 wk) values were significantly lower than the other experimental groups (2 wks or 3 wks). In the comparison of each experimental group according to healing time, the final removal torque value was significantly higher than the 1st torque test value. Conclusion: Once or twice mobilization of fixture prior to osseointegration did not deter the final bone to implant osseointegration, if sufficient healing time was given.