• Title/Summary/Keyword: impinging jet

Search Result 440, Processing Time 0.027 seconds

A Study on the Heat Transfer Augmentation by Using Wire-mesh Impinging Water Jet (충돌수분류계(衝突水噴流系)에서 와이어 메쉬를 사용(使用)한 열전달(熱傳達) 증진(增進)에 관(關)한 연구(硏究))

  • Na, G.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.291-301
    • /
    • 1994
  • This paper presents the promotion of heat transfer through the use of wire-mesh screens. To improve heat transfer in an impingement water system, the wire-mesh screens are installed between the nozzle-to-heater surfaces. When the wire-mesh screens are not employed, this report exhibits the maximum heat transfer and the secondary maximum value at the stagnation point. But in case of using the wire-mesh screens, the transfer coefficient value of maximum heat exists at the stagnation point, and the second maximum value doesn't occur. Therefore, the heat transfer is more improved than 4~6 times that of the mean Nusselt numbers of simple water jet system, Also, within the region presented in this study, the heat transfer was promoted by using the wire-mesh screens at the stagnation point ; thus, the heat transfer was more increased than 6-7. 5 times that of simple water jet system.

  • PDF

Numerical study for downburst wind and its load on high-rise building

  • Huang, Guoqing;Liu, Weizhan;Zhou, Qiang;Yan, Zhitao;Zuo, Delong
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.89-100
    • /
    • 2018
  • 3D simulations based on an impinging jet were carried out to investigate the flow field of a steady downburst and its effects on a high-rise building by applying the SST k-${\omega}$ turbulence model. The vertical profile of radial wind speed obtained from the simulation was compared with experimental data and empirical models in order to validate the accuracy of the present numerical method. Then wind profiles and the influence of jet velocity and jet height were investigated. Focusing on a high-rise building, the flow structures around the building, pressure distributions on the building surfaces and aerodynamic forces were analyzed in order to enhance the understanding of wind load characteristics on a high-rise building immersed in a downburst.

A Study on Heat Transfer Augmentation in Rectangular Impinging Water Jet System (사각(四角) 충돌수분류(衝突水噴流)의 열전달증진(熱傳達增進)에 관(關)한 연구(硏究))

  • Park, S.Y.;Lee, J.S.;Ohm, K.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.42-50
    • /
    • 1991
  • The purpose of this study is an augmentation of heat transfer in the case of upward rectangular impinging water jet system. The variables of this study are nozzle-to-heated surface distance, jet velocity and supplementary water height. Optimum heights of supplementary water which augment the heat transfer rate are S/B=2 for H/B=30 and S/B=I for H/B=40, 50. On the Y-direction of nozzle, there exhibits the secondary peak of heat transfer coefficient when supplementary water is not used, however using the supplementary water, it does not exhibits. In the case of using supplementary water, heat transfer coefficient increases not only in stagnation region but also in wall jet region.

  • PDF

Heat Transfer Augmentation on Flat Plate with Two- Dimensional Rods in Impinging Air Jet System (1) : Effect of Clearance between flat plate and rod (충돌판(衝突板) 근방(近傍)에 배열(配列)된 2차원(次元) rod가 충돌분류(衝突噴流) 열전달(熱傳達)에 미치는 영향(影響) (1) : 전열면(傳熱面)-rod간(間)의 간극효과(間隙效果))

  • Lee, Yong Hwa;Seo, Jeong Yun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-81
    • /
    • 1989
  • The purpose of this study is augmentation of heat transfer without additional power in a rectangular impinging air jet. As a method of passive heat transfer augmentation in a two-dimensional air jet, heat transfer surface of flat plate with rods is used. This study, particularly in the wall jet rigeon, investigates the effect of the clearance between the flat plate and rod. Mechanism of heat transfer enhancement is investigated by measuring the local heat transfer coefficient. It is concluded that the superposition of the effects of flow accelerlation through the clearance between the flat plate and the rod, and reattachment of the flow was the cause of the excellent performance. The overall heat transfer rate of flat plate with rods is about 1.5 times larger than that of flat plate without rods.

  • PDF

A Numerical Study on Flow and Cooling Characteristics of Impinging Jets on a Moving Plate (이동하는 평판에서 충돌제트의 유동 및 냉각 특성에 대한 수치적 연구)

  • Jeon, Jin-Ho;Suh, Young-Ho;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2562-2567
    • /
    • 2008
  • Jet impingement on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The liquid-gas interface or free surface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The computations are made for multiple jets as well as a single jet to compare their flow characteristics. Also, the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

An Experimental Study on the Flame Appearance and Heat Transfer Characteristics of Acoustically Excited Impinging Inverse Diffusion Flames (음향 가진된 충돌 역 확산화염의 화염형상과 열전달 특성에 관한 실험적 연구)

  • Kang, Ki-Joong;Lee, Kee-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3647-3653
    • /
    • 2010
  • An experimental investigation of the flame appearance and heat transfer characteristics in both unexcited and excited impinging inverse diffusion flames with a loud speaker has been performed. The flame is found to become broader and shorter (in length) with acoustic excitation. The heat flux at the stagnation point is increased with the acoustic excitation. The acoustic excitation is more effective in lean conditions than in rich conditions. The reasons for these behaviors are that acoustic excitation improves the entrainment of surrounding air into the jet. From this study, it is found that the maximum increase of 57% in the total heat flux is obtained at the stagnation point of $\Phi$=0.8. Therefore, it is ascertained that the excitation combustion can be adopted with effective instruments as a method for improving heat transfer in impinging jet flames.

Oblique Angle Effect of Impinging Jet on Heat Flow Characteristics of a Corrugated Structure (충돌제트의 경사각도가 파형 구조의 열유동 특성에 미치는 영향)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.83-93
    • /
    • 2017
  • A numerical analysis is made of the fluid flow and heat transfer characteristics in the corrugated structure that traps the spent air in the corrugations between impinging jets to reduce crossflow effects on downstream jets in the array. All computations are performed by considering three-dimensional, steady state, and incompressible flow by using the ANSYS-CFX 15.0 code. Averaged jet Reynolds number is 10,000. The oblique angles of impingement jets on the spanwise section are $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, and the oblique angles of impingement jets on the streamwise section are $70^{\circ}$, $90^{\circ}$, $110^{\circ}$. The investigation focuses on the oblique angle influence of impinging jet array on the fluid flow and heat transfer characteristics of a corrugated structure.

The Experimental Study for Heat Transfer and Combustion Characteristics of Gaseous Impinging Jet Premixed Flame (예혼합 화염이 벽면에 충돌시 열전달 및 연소특성에 관한 실험적 연구)

  • 정은규;조경민;김호영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.1-10
    • /
    • 1996
  • In the present study, the structure and the characteristics of gaseous premixed flame impinging normal to the flat plate have been investigated experimentally. For the examination of the heat transfer and combustion characteristics, measurements of temperature, direct and schlieren photography were performed. The results of present study show that the length of inner flame becomes smaller as distance from nozzle exit to plate decrease. The width of flame becomes larger as air-fuel ratio decreases. The smaller Reynolds number at nozzle exit and the smaller distance from nozzle exit to plate lead to the higher heat transfer rate in the region of center of plate. As the air-fuel ratio decreases, the heat transfer at plate with moderate rate occurs on wide region.

  • PDF

A Visualization of Smoke Front under a Horizontal Plate (평판하 연기선단의 가시화)

  • 한용식;김명배;오광철;유상필
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2001
  • The flow induced by a vertically impinging circular jet under a horizontal plate is investigated by visualization technique, using kerosene smoke in nitrogen gas to visualize the vortex flow and impinging flow. The light source was the sheet beam of Ar-Ion laser. The vertical and horizontal images scattering of kerosene smoke were recorded by the high speed CCD camera and the video camera. The instantaneous velocity of the vortex and the mean velocity of the smoke front were measured from the acquisited images.

  • PDF