• 제목/요약/키워드: impinging jet

검색결과 439건 처리시간 0.03초

표준화상을 이용한 2차원 PIV와 3차원 PIV계측 및 성능비교검정 (Performance Test of 2-Dimensional PIV and 3-Dimensional PIV using Standard Images)

  • 도덕희;황태규;송주석;백태실;편용범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.646-651
    • /
    • 2003
  • Quantitative performance test on the conventional 2D-PIV and the hybrid angular 3D-PIV (Stereoscopic PIV) was carried out. LES Data sets on an impinging jet which are provided on the webpage(http://www.vsj.or.jp/piv) for the PIV Standard Project were used for the generation of virtual images. The generated virtual images were used for the 2D-PIV and 3D-PIV measurements. The measurement results showed that the results obtained by 2D-PIV on average values are closer to the LES data than those obtained by 3D-PIV, but the turbulent properties obtained by 2D-PIV are largely underestimated than those obtained by 3D-PIV.

  • PDF

보일러용 연료분사 시스템의 충돌분무 시스템화의 가능성 진단 및 파급효과 분석 (Application of Impinging Jet Injectors to Boiler Spray System : Possibility and Effects)

  • 박종훈;정기훈;윤영빈;황상순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.460-465
    • /
    • 1999
  • 액체 로켓용 충돌분사형 인젝터는 구조가 매우 간단하면서 고유량의 연료를 분사시킬 수 있기 때문에 여러 엔진에 응용된 바 있다. 본 연구에서는 이러한 인젝터의 특성을 산업용 보일러에 적용하기 위한 기초 실험 및 수치 계산을 수행하였다. 충돌분사 노즐로부터 형성되는 분무의 분포 특성을 실험적으로 측정하였고 이를 실제 조건에 모사하기 위해 수치 계산을 하여, 두 결과를 비교하여보았다. 이로부터 보일러의 효율과 공해물질 저감에 영향을 가져오는 액적의 미립화 특성을 향상시킬수 있는 연료 분사 조건을 제시하였다.

  • PDF

하이브리드 로드에 의한 열전달증진에 관한 연구 (An Experimental Study on the Heat Transfer Enhancement by Hybrid Rod)

  • 금성민;김동춘;임장순
    • 태양에너지
    • /
    • 제19권3호
    • /
    • pp.93-100
    • /
    • 1999
  • The objective of this experimental study was to investigate the characteristics of heat transfer and air flow in two-dimensional impinging jet system, in which hybrid rods have been set up in front of heating surface in order to increase heat transfer. The shape of hybrid rods had a cross section made with a half of circular cross section and that of rectangular. This time, the clearance from hybrid rod to heating surface(C=1, 2, 4mm) and the pitch between each hybrid rods(P=30, 40, 50mm) changed for the transition region(H/B=10). And this result compared with the experimentation without hybrid rod. As a result, heat transfer performance was best under the condition of C=1mm, in case clearance changed, and as the pitch is 30mm, it is largely influenced by eddies and acceleration in case pitch of hybrid rod changed.

  • PDF

표준영상을 이용한 2차원 PIV와 3차원 PIV 성능시험 (Performance Test on 2-Dimensional PIV and 3-Dimensional PIV Using Standard Images)

  • 황태규;도덕희
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1315-1321
    • /
    • 2004
  • Quantitative performance test on the conventional 2D-PIV and the hybrid angular 3D-PIV(Stereoscopic PIV) was carried out. LES Data sets on an impinging jet which are provided on the webpage(http://www.vsj.or.jp/piv) for the PIV Standard Project were used for the generation of virtual images. The generated virtual images were used for the 2D-PIV and 3D-PIV measurements test. It has been shown that the results obtained by 2D-PIV on average values are slightly closer to the LES data than those obtained by 3D-PIV, but the turbulent properties obtained by 2D-PIV are largely underestimated than those obtained by 3D-PIV.

아음속 저속 유동용 Pressure Sensitive Paint의 개발과 응용 (Development of Pressure Sensitive Paint(PSP) technique for low-speed flows and its application)

  • 강종훈;이상준
    • 한국항공우주학회지
    • /
    • 제32권4호
    • /
    • pp.12-17
    • /
    • 2004
  • 고속 유동 속에 놓인 모델 표변의 압력분포를 정량적으로 측정하기 위해 PSP 기술이 사용되고 있다. 본 연구에서는 아음속 유동에 적용 가능한 PSP 기술을 개발하였다. 2가지의 백금계열 (PtOEP와 PtTFPP)의 발광분자와 2 가지의 폴리머 (Poly(TMSP)와 RTV-118)를 사 용하여 4가지의 PSP 조합을 만들어 그 성능을 확인하였다. 압력변화에 따른 PSP의 발광강 도를 측정하기 위해 $0{\sim}11kPa$까지 0.5, 1, 2kPa썩 압력을 증가시키면서 정적보정실험을 수행하였다. 4가지의 PSP 조성 중에 PtOEP 와 RTV-118의 조합이 가장 좋은 성능을 보였다. 충돌평판에 작용하는 압력장 분포를 측정하기 위하여 경사충돌분류에 본 연구에서 개발된 PSP 기술을 응용하였다.

Water film covering characteristic on horizontal fuel rod under impinging cooling condition

  • Penghui Zhang;Bowei Wang;Ronghua Chen;G.H. Su;Wenxi Tian;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4329-4337
    • /
    • 2022
  • Jet impinging device is designed for decay heat removal on horizontal fuel rods in a low temperature heating reactor. An experimental system with a fuel rod simulator is established and experiments are performed to evaluate water film covering capacity, within 0.0287-0.0444 kg/ms mass flow rate, 0-164.1 kW/m2 heating flux and 13.8-91.4℃ feeding water temperature. An effective method to obtain the film coverage rate by infrared equipment is proposed. Water film flowing patterns are recoded and the film coverage rates at different circumference angles are measured. It is found the film coverage rate decreases with heating flux during single-phase convection, while increases after onset of nucleate boiling. Besides, film coverage rate is found affected by Marangoni effect and film accelerating effect, and surface wetting is significantly facilitated by bubble behavior. Based on the observed phenomenon and physical mechanism, dry-out depth and initial dry-out rate are proposed to evaluate film covering potential on a heating surface. A model to predict film coverage rate is proposed based on the data. The findings would have reliable guide and important implications for further evaluation and design of decay heat removal system of new reactors, and could be helpful for passive containment cooling research.

경사면(傾斜面)에 충돌(衝突) 하는 수분류(水噴流)의 열전달(熱傳達) 특성(特性)에 관(關)한 연구(硏究) (Heat Transfer Characteristics of Water Jet Impinging on Oblique Surface)

  • 최국광;나기대;김은영;전성택;이종수
    • 태양에너지
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 1993
  • 하향(下向)의 축대칭자유분류(軸對稱自由噴流)가 등열유속(等熱流束) 조건(條件)의 경사전열면(傾斜傳熱面)에 충돌(衝突)하는 축대칭(軸對稱) 충돌수분류계(衝突水噴流系)를 구성(構成)하였다. 실험변수(實驗變數)로는 노즐-전열면간 거리(距離), 레이놀즈수, 무차원경사각(無次元傾斜角)으로 하였으며, 노즐-전열면간 거리의 범위는 $1.5{\sim}10.5$, 레이놀즈수의 범위(範圍)는 $1{\times}10^4{\sim}4{\times}10^4$, 무차원 경사각의 범위는 0.5, 0.67, 0.83, 1.00으로 하였다. 이와같은 실험적(實驗的) 연구(硏究)에서 국소누셀트수는 $Re^{0.7}$에 비례(比例)하여 증가(增加)되었으며 또한 정체점(停滯點)으로부터 국소거리(局所距離)가 8배(培)되는 하향구배전열면(下向句配傳熱面)의 국소위치(局所位置)에 제2(第)의 극대(極大) 열전달(熱傳達) 현상(現像)이 나타났다. 국소누셀트수는 분류속도가 저속(低速)의 경우 전열면(傳熱面)의 경사각의 영향이 작게 나타나고 있으나, 고속영역(高速領域)이 됨에 따라 경사각의 영향이 증가(增加)되었으며, 특히 국소위치의 $X/D{\leq}4$는 벽면분류영역(壁面噴流領域)에서 경사각에 대한 영향이 명확(明確)하게 나타나고 있다. 정체점열전달(停滯點熱傳達)은 분류속도(噴流速度)와 노즐-전열면간 거리에 비례(比例)해서 증가(增加)되며 층류이론해(層流理論解)에 비(比)하여 최소(最少) 2.4배(培) 이상 높은 열전달효과(熱傳達效果)를 나타내었으며, 정체점(停滯點)누셀트수는 레이놀즈수, 프란틀수, 노즐-전열면간 거리 그리고 무차원(無次元) 경사각(傾斜角)을 포함(包含)하는 무차원(無次元) 실험식(實驗式)으로 나타내었다.

  • PDF

연속 아연 도금 코-팅 두께에 관한 수치 해석적 연구 (A Numerical Analysis on the Coating Thickness in Continuous Hot-Dip Galvanizing)

  • 이동원;신승영;김병지;권영두;권순범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2955-2960
    • /
    • 2007
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early day that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. And, it is known that the problem of splashing is caused mainly by the existence of separation bubble at the neighbor of the strip surface. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard ${\kappa}-{\varepsilon}$ turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to reduce the size of separation bubble and to enhance the cutting ability at the strip, it is recommendable to use an air knife having the constant expansion rate nozzle.

  • PDF

연속 아연 도금 두께에 관한 수치 해석적 연구 (A NUMERICAL STUDY ON THE COATING THICKNESS IN CONTINUOUS HOT-DIP GALVANIZING)

  • 이동원;신승영;조태석;권영두;권순범
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2009
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early days that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. Also, it is known that the problem of splashing directly depends upon the galvanizing speed and nozzle stagnation pressure. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard k-e turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to enhance the cutting ability at the strip, it is advisable to use an air knife with the constant expansion rate nozzle.

항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석 (Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine)

  • 김진욱;박정규;강영석;조진수
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.