• 제목/요약/키워드: impeller pump

검색결과 340건 처리시간 0.027초

원심펌프 임펠러 입구각도 변화에 따른 유동해석 (FLOW ANALYSIS OF THE IMPELLER WITH DIFFERENT INLET ANGLES IN THE CENTRIFUGAL PUMP)

  • 이성현;이동렬
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.58-63
    • /
    • 2016
  • This research is to investigate the performance analysis for efficient design with four different inlet angles of the centrifugal pump impeller. Assuming that the rotation speed and exit angle are fixed, Four cases of the centrifugal pumps were numerically analyzed using ANSYS FLUENT. According to the numerical results, head and pump efficiency at inlet angle of 20 degrees was highest. There is no big difference of efficiency at inlet angle of 20 degrees compared to the inlet angle 30 degrees. About 15% of efficiency at inlet angle of 20 degrees is higher than inlet angle of 40 degrees and 31% higher than inlet angle oof 50 degrees. Because there is liner functional relationship between speed and flow rate, suction flow rate at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.89%, inlet angle of 40 degrees as 13%, inlet angle of 50 as 28.4%. Head at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.4%, inlet angle of 40 degrees as 2.7%, inlet angle of 50 degrees as 3.2%. There should exist highest efficiency and also optimal design shape at inlet angle of 20 degrees.

상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석 (Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code)

  • 최영석;이용갑;홍순삼;강신형
    • 한국유체기계학회 논문집
    • /
    • 제4권1호
    • /
    • pp.38-45
    • /
    • 2001
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller of a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

CFD에 의한 입형 다단 원심펌프 유동특성에 관한 연구 (A Study on Flow Characteristics of Vertical Multi-stage Centrifugal Pump by CFD)

  • 모장오;남구만;김유택;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.402-407
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pimp including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26\;m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is to confirm how much the effect of blade inlet angle of guide vane has an influence on the performance of vertical multi-stage centrifugal pimp. these results performed by $20^{\circ},\;30^{\circ}$ inlet angle of guide vane are compared with grundfos performance data. The vertical multi-stage pump consist of the impeller, guide vane, and cylinder. The characteristics such as total pressure coefficient total heat shaft horse power, power efficiency, discharge coefficient are represented according to flow rate changing.

  • PDF

양정곡선 기울기를 고려한 원자로 냉각재 펌프의 수력설계 (Hydraulic Design of Reactor Coolant Pump Considering Head Curve Slope at Design Point)

  • 유일수;박무룡;윤의수
    • 한국유체기계학회 논문집
    • /
    • 제14권1호
    • /
    • pp.18-23
    • /
    • 2011
  • The hydraulic part in reactor coolant pump consists of suction nozzle, impeller, diffuser, and discharge nozzle. Among them, impeller is required to be designed to satisfy performance requirements such as head, NPSHR, and head curve slope at design point. Present study is intended to suggest the preliminary design method sizing the impeller size to satisfy the design requirement particularly including head curve slope at design point. On a basis of preliminary design result, hydraulic components have been designed in detail by CFD and then manufactured in a reduced scale. Experiment in parallel with computational analysis has been executed in order to confirm the hydraulic performance. Comparison results show good agreement with design result, confirming the validity of design method suggested in this study.

극저온용 액중펌프의 임펠러 및 샤프트 진동해석에 관한 연구 (A Study on the Vibration Analysis of Impeller and Shaft in Cryogenic Submerged Pump)

  • 권병수;이치우;신유인;이중섭
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.56-62
    • /
    • 2017
  • In this research, reverse engineering was applied to the product manufactured by "Vanzetti" from Italy to develop a localized cryogenic submerged pump used in small-scale LNG liquefaction plants. The results of modal analysis of the impeller and shaft confirmed that the resonance frequency of the impeller and shaft played an important role in the rotor. Modal analysis of the rotor confirmed that the forcing frequency had no influence on the resonance phenomenon.

워터펌트 내에 있는 임펠러의 침식.부식에 관한 연구 (Study on the erosion-corrosion damages of pump impeller)

  • 김재욱;임희창;임우조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.102-107
    • /
    • 2007
  • The steel impeller placed in a water pump has been studied with the aim to understand corrosion phenomena on the surface responsible for reducing the pumping efficiency of water inside cooling system. This preliminary experiment includes a period (around 1 month) observation with a powered microscope and weight measurements. The experiments are carried out at different conditions of water and mixtures of water and coolants, based on the water contents of 25%, 50%, 75%, and 100% water (pure tap water). From the visual results of microscopy, most of the steel surface is fitted and clear rusty or corrosion phenomena are noticeable as time goes. In addition, the weight loss of the sample specimen submerged in the water is linearly increased, whereas those in the mixtures of water initially gain weight and become almost constant.

  • PDF

상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석 (Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code)

  • 최영석;이용갑;홍순삼;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.305-311
    • /
    • 2000
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller o( a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

펌프 임펠러의 부식 파손에 대한 연구 (Study on the Corrosion Damages of Pump Impeller)

  • 김재욱;임희창;권오붕;배대석
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.46-52
    • /
    • 2009
  • The steel impeller placed in a water pump has been studied with the aim to understand corrosion phenomena on the surface responsible for reducing the pumping efficiency of water inside cooling system. This preliminary experiment includes a period (over 5 months) observation with a powered microscope and weight measurements. The experiments are carried out at different conditions of water and mixtures of water and coolants, based on the water contents of 25%, 50%, 75%, and 100% water (pure tap water). From the visual results of microscopy, most of the steel surface is fitted and clear rusty or corrosion phenomena are noticeable as time goes. In addition, the weight loss of the sample specimen submerged in the water is linearly increased, whereas those in the mixtures of water initially be constant and then gain weight linearly.

  • PDF

고압 다단 펌프의 임펠러 자오면 곡선에 대한 수치 해석적 연구 (A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump)

  • 김덕수;전상규;산자르;박원규
    • 대한기계학회논문집B
    • /
    • 제41권7호
    • /
    • pp.445-453
    • /
    • 2017
  • 본 연구에서는 RO용 고압 다단 펌프의 수력 부 성능에 대해서 연구를 수행하였다. 수력 부 설계는 크게 임펠러 설계와 레이디얼 디퓨저 설계로 나뉠 수 있다. 임펠러의 자오면 형상 변화에 따른 유동분포와 성능을 수치 해석적으로 연구하였으며, 임펠러 외경, 출구 폭, eye dia 등은 고정시킨 상태에서 반응 표면 기법을 이용하여 허브 및 쉬라우드 자오면 곡선을 변화 시키면서 성능을 최적화하였다. 해석결과 양정에 가장 큰 영향을 미치는 설계 변수는 ${\varepsilon}Ds$로 나타났으며 효율은 허브 입구 길이 및 쉬라우드 곡선이 가장 큰 영향을 주는 것을 알 수 있었다. 자오면 프로파일을 변경한 결과 기준모델(case 25)에 비해 약 0.5% 효율이 개선됨을 확인할 수 있었다.

기-액 2상유동에 따른 원심펌프 성능변화에 대한 연구 (A Study on the Performance of a Centrifugal Pump with Two-Phase Flow)

  • 이종철;김윤제;김철수
    • 한국유체기계학회 논문집
    • /
    • 제3권3호
    • /
    • pp.12-18
    • /
    • 2000
  • In this study, experimental and numerical analyses are carried out to investigate the performance of centrifugal pump with various air admitting conditions. Experiments on the pump performance under air-water two-phase flow are accomplished using a centrifugal pump with semi-open type impeller having three, five and seven blades, respectively. Also, the numerical analysis of turbulent air-water two-phase flow using the finite volume method has been carried out to obtain the pressure, velocities and void fraction on the basis of a so-called bubbly flow model with the constant size and shape of cavity. The results obtained through this study show the reasonable agreements within the range of bubbly flow regime. There are promising developments concerning application of the present study for the flow in a centrifugal pump with two-phase flow conditions and efforts must be followed to improve the turbulence model and two-phase flow model for turbomachinery.

  • PDF