• 제목/요약/키워드: impedance responses

검색결과 111건 처리시간 0.023초

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.

최대 전압 12 kV, 커패시턴스 50~500 pF 가변 진공커패시터 개발 (Development of Variable Vacuum Capacitor with Maximum Voltage of 12 kV and Capacitance of 50 to 500 pF)

  • 차영광;이일회;전기범;장지훈;주흥진;최승길
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.232-240
    • /
    • 2022
  • A variable vacuum capacitor (VVC), which is a variable element, is used to match impedance in plasma that changes with various impedance values, and its use is expanding with the rapid growth of the semiconductor business. Since VVCs have to secure insulation performance and vary capacitance within a compact size, electrode design and manufacturing are very important; thus, various technologies such as part design and manufacturing technology and vacuum brazing technology are required. In this study, based on the model of an advanced foreign company that is widely used for impedance matching in the manufacture of semiconductors and displays, a VVC that can realize the same performance was developed. The electrode part was designed, the consistency was confirmed through analysis, and the precision of capacitance was improved by designing a cup-type electrode to secure the concentricity of the electrode. As a result of the evaluation, all requirements was satisfied. We believe that self-development will be possible if satisfactory responses are received through evaluation by VVC consumers in the future.

비선형 로터-하우싱 시스템의 동특성 해석 연구 (A study on the Analysis of Dynamic Characteristic for Nonlinear Rotor-Housing Systems)

  • Kim, G.G.;Lim, J.H.;Chung, I.S.
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.69-78
    • /
    • 1995
  • Nonlinear analysis methods are developed which will enable the reliable prediction of the dynamic behavior of the space shuttle main engine(SSME) turbopumps in the presence of bearing clearances and other local nonlinearities. A computationally efficient convolution method, based on discretized Duhamel and transition matrix integral formulations, is developed for the transient analysis. In the formulation, the coupling forces due to the onlinearities are treated as external forces acting on the coupled subsystems. Iteration is utilized to determine their magnitudes at each time increament. The method is applied to a nonlinear generic model of the high pressure oxygen turthods, the convolution approach proved to be more accurate and highly more efficient. For determining the nonlinear, steady-state periodic responses, an incremental harmonic balance(IHB) method was also developed. The method was successfully used to determine dominantly harmonic and subharmonic(subsynchronous) responses of the HPOTP generic model with bearing clearances. A reduction method similar to the impedance formulation utilized with linear systems is used to reduce the housing-totor models to their coordinates at the bearing clearances.

  • PDF

Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.127-153
    • /
    • 2012
  • This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains and this includes uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure that is coupled with an internal dissipative acoustic fluid. This includes wall acoustic impedances and it is surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to the prescribed mechanical forces. An efficient reduced-order computational model is constructed by using a finite element discretization for the structure and an internal acoustic fluid. The external acoustic fluid is treated by using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid that includes wall acoustic impedance and a model of uncertainty in particular for the modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art are well adapted for the development of a new generation of software, in particular for parallel computers.

모형개선을 위한 감쇠행렬 추정법의 비교 (Comparison of Damping Matrix Estimation Methods for Model Updating)

  • 이건명;주영호;박문수
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.923-930
    • /
    • 2010
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping, and in the second stage, damping matrices are estimated with the mass and stiffness matrices fixed. Three methods to estimate damping matrices for this purpose are proposed in this paper. The methods include one for proportional damping systems and two for non-proportional damping systems. Method 1 utilizes orthogonality of normal modes and estimates damping matrices using the modal parameters extracted from the measured responses. Method 2 estimates damping matrices from impedance matrices which are the inverse of FRF matrices. Method 3 estimates damping using the equation which relates a damping matrix to the difference between the analytical and measured FRFs. The characteristics of the three methods are investigated by applying them to simulated discrete system data and experimental cantilever beam data.

신경자극반응 측정을 위한 플랫폼 구현에 관한 연구 (A Study on Platform Development for Nerve Stimulation Response Measurement)

  • 신효섭;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.521-524
    • /
    • 2009
  • 신경자극반응 측정 플랫폼을 구현하는데 있어서 손가락 움직임을 감지하는 것이 중요한 요소로 작용하고 있다. 이것은 손가락의 움직임에 따라 신경자극과 근육반응이 달라지기 때문이다. 즉, 손가락의 움직임을 감지해서 신경 자극 Actuator 및 근육 반응 감지를 위한 H/W 개발이 필요한 것이다. 또한 임베디드 기반으로 가기위한 저전력 CPU를 사용하였다. H/W 구성은 isolation power부분, 정전류조절, High impedance INA, 증폭기부분이 있으며 Micro-controller에서는 stimulus mode 및 Current 의 상태를 통제하고, AD converter를 통해 얻어진 Low Data를 처리 시스템을 구현한다.

  • PDF

Volatile Organic Compound Specific Detection by Electrochemical Signals Using a Cell-Based Sensor

  • Chung, Sang-Gwi;Kim, Jo-Chun;Park, Chong-Ho;Ahn, Woong-Shick;Kim, Yong-Wan;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.145-152
    • /
    • 2008
  • A cell-based in vitro exposure system was developed to determine whether oxidative stress plays a role in the cytotoxic effects of volatile organic compounds (VOCs) such as benzene, toluene, xylene, and chlorobenzene, using human epithelial HeLa cells. Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for immobilization of the HeLa cells on a gold (Au) substrate. In addition, an immobilized cell-based sensor was applied to the electrochemical detection of the VOCs. Layer formation and immobilization of the cells were investigated with surface plasmon resonance (SPR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The adhered living cells were exposed to VOCs; this caused a change in the SPR angle and the VOC-specific electrochemical signal. In addition, VOC toxicity was found to correlate with the degree of nitric oxide (NO) generation and EIS. The primary reason for the marked increase in impedance was the change of aqueous electrolyte composition as a result of cell responses. The p53 and NF-${\kappa}B $ downregulation were closely related to the magnitude of growth inhibition associated with increasing concentrations of each VOC. Therefore, the proposed cell immobilization method, using a self-assembly technique and VOC-specific electrochemical signals, can be applied to construct a cell microarray for onsite VOC monitoring.

Impedance-Based Characterization of 2-Dimenisonal Conduction Transports in the LaAlO3/SrxCa1-xTiO3/SrTiO3 systems

  • Choi, Yoo-Jin;Park, Da-Hee;Kim, Eui-Hyun;Park, Chan-Rok;Kwon, Kyeong-Woo;Moon, Seon-Young;Baek, Seung-Hyub;Kim, Jin-Sang;Hwang, Jinha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.171.2-171.2
    • /
    • 2016
  • The 2-dimensiona electron gas (2DEG) layers have opened tremendous interests in the heterooxide interfaces formed between two insulating materials, especially between LaAlO3 and $SrTiO_3$. The 2DEG layers exhibit extremely high mobility and carrier concentrations along with metallic transport phenomena unlike the constituent oxide materials, i.e., $LaAlO_3$ and $SrTiO_3$. The current work inserted artificially the interfacial layer, $Sr_xCa_{1-x}TiO_3$ between $LaAlO_3$ and $SrTiO_3$, with the aim to controlling the 2-dimensional transports. The insertion of the additional materials affect significantly their corresponding electrical transports. Such features have been probed using DC and AC-based characterizations. In particular, impedance spectroscopy was employed as an AC-based characterization tool. Frequency-dependent impedance spectroscopy have been widely applied to a number of electroceramic materials, such as varistors, MLCCs, solid electrolytes, etc. Impedance spectroscopy provides powerful information on the materials system: i) the simultaneous measurement of conductivity and dielectric constants, ii) systematic identification of electrical origins among bulk-, grain boundary-, and electrode-based responses, and iii) the numerical estimation on the uniformity of the electrical origins. Impedance spectroscopy was applied to the $LaAlO_3/Sr_xCa_{1-x}TiO_3/SrTiO_3$ system, in order to understand the 2-dimensional transports in terms of the interfacial design concepts. The 2-dimensional conduction behavior system is analyzed with special emphasis on the underlying mechanisms. Such approach is discussed towards rational optimization of the 2-dimensional nanoelectronic devices.

  • PDF

등가회로망 모델을 이용한 Bistatic 지하탐사 레이더 시스템의 수신응답 해석 (Analysis of Receiving Responses for a Bistatic Ground-Penetrating Radar System by Using Equivalent Network Model)

  • 현승엽
    • 대한전자공학회논문지TC
    • /
    • 제37권6호
    • /
    • pp.404-404
    • /
    • 2000
  • 3차원 FDTD 법과 등가회로망 모델을 이용하여 bistatic GPR 시스템의 수신응답을 해석하였다. 기존의 델타갭 급전모델은 안테나와 선로간의 임피던스 정합특성을 고려하지 않았기 때문에 부정확하다는 것을 알 수 있었다. 본 논문에서는 실제 GPR의 물리적 특성을 고려하여 개선된 급전모델을 구성하였다. 실제 bistatic GPR 시스템에 대한 3차원 FDTD 해석결과를 이용하여 각주파수 영역의 등가 회로망 모델을 구성하여 실제 수신전압을 계산하였다. 계산결과가 측정자료에 접근함을 보임으로써 제시한 모델의 타당성을 입증하였다.

등가회로망 모델을 이용한 Bistatic 지하탐사 레이더 시스템의 수신응답 해석 (Analysis of Receiving Responses for a Bistatic Ground-Penetrating Radar System by Using Equivalent Network Model)

  • 현승엽;김상욱;김세윤
    • 대한전자공학회논문지TC
    • /
    • 제37권6호
    • /
    • pp.44-53
    • /
    • 2000
  • 3차원 FDTD 법과 등가회로망 모델을 이용하여 bistatic GPR 시스템의 수신응답을 해석하였다. 기존의 델타갭 급전모델은 안테나와 선로간의 임피던스 정합특성을 고려하지 않았기 때문에 부정확하다는 것을 알 수 있었다. 본 논문에서는 실제 GPR의 물리적 특성을 고려하여 개선된 급전모델을 구성하였다. 실제 bistatic GPR 시스템에 대한 3차원 FDTD 해석결과를 이용하여 각주파수 영역의 등가 회로망 모델을 구성하여 실제 수신전압을 계산하였다. 계산결과가 측정자료에 접근함을 보임으로써 제시한 모델의 타당성을 입증하였다.

  • PDF