• Title/Summary/Keyword: impedance matching

Search Result 672, Processing Time 0.035 seconds

Research on Transmission Line Design for Efficient RF Power Delivery to Plasma (전송선로를 이용한 플라즈마 전력 전달 연구)

  • Park, In Yong;Lee, Jang Jae;Kim, Si-Jun;Lee, Ba Da;Kim, Kwang Ki;Yeom, Hee Jung;You, Shin Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.6-10
    • /
    • 2016
  • In RF plasma processing, when the plasma is generated, there is the difference of impedance between RF generator and plasma source. Its difference is normally reduced by using the matcher and the RF power is transferred efficiently from the power generator to the plasma source. The generated plasma has source impedance that it can be changed during processing by pressure, frequency, density and so on. If the range of source impedance excesses the matching range of the matcher, it cannot match all value of the impedance. In this research, we studied the elevation mechanism of the RF power delivery efficiency between RF generator to the plasma source by using the transmission line and impedance tuning of the plasma source. We focus on two plasma sources (capacitive coupled plasma (CCP), inductive coupled plasma (ICP)) which is most widely used in industry recently.

Power Factor Compensation for Wideband Acoustic Projector Using Measurement Data and ABCD matrix (ABCD 전송 파라메터를 사용한 광대역 음향 발신기의 역률 개선 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Guk
    • 전자공학회논문지 IE
    • /
    • v.48 no.3
    • /
    • pp.10-15
    • /
    • 2011
  • In the case of designing an acoustic transducer for high power application, we usually aim to transfer the source electric energy to the output acoustic energy as large as possible. For this purpose, we should match the impedance of the power amplifier to the impedance combined with the acoustic transducer impedance and the radiation impedance. Especially if we have electrical source with almost zero impedance, we need improve the power factor of the acoustic transducer in the load. In this paper, we propose a broad band impedance matching method by the improvement of power factor, which applies ABCD matrix.

Voltage-Controlled Artificial Transmission Line Employing Periodically Loaded Diodes for Application to On-Chip Matching Components on MMIC (MMIC용 온칩 정합 소자에의 응용을 위한 주기적 배열 다이오드 구조를 이용한 전압 제어형 전송 선로)

  • Yun, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • In this paper, we propose VATL(Voltage-controlled Artificial Transmission Line) employing periodically loaded diodes for application to on-chip matching components on MMIC. Compared with conventional microstrip line, the VATL showed a much shorter wave length due to periodic capacitance of diodes, and the characteristic impedance of the VATL was easily controlled bγ changing supplied voltage. Concretely, the characteristic impedance of the VATL was changed from $80{\sim}20{\Omega}$ in a range of $0{\sim}1.05V$ and the VATL showed a wavelength of 1.5mm at 20GHz, while conventional microstrip line showed a wavelength of 5.3mm at the same frequency. Using the VATL, a ${\lambda}/4$ impedance transformer was fabricated on GaAs MMIC for application to on-chip matching components on MMIC. Using the ${\lambda}/4$ impedance transformer made it possible to perform impedance matching between RF components with various characteristic impedance of $30{\sim}100{\Omega}$ by adjusting applied Voltage.

Signal Transmission Properties Improvement of Serial Advanced Technology Attachment Connector Using Analysis of Differential Impedance (차동 임피던스 분석을 사용한 SATA 커넥터의 신호 전달 특성 개선)

  • Yang, Jeong-Kyu;Kim, Moonjung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.47-53
    • /
    • 2013
  • In this work, signal transmission properties of SATA connector have been improved using its differential impedance calculation and its design revision to closer impedance matching. Using 3 dimensional electromagnetic field simulator, the differential mode S-parameter was calculated to investigate its signal fidelity. The differential impedance is calculated from the equation of the odd mode impedance with inductance, capacitance, mutual inductance, and mutual capacitance. The differential impedance of SATA connector was calculated to be $107.3{\Omega}$ and did not meet the design specification with $100{\Omega}{\pm}5%$. In order to achieve its impedance range and improve its signal transmission properties, SATA connector's design has been revised with two different directions and analyzed through the calculation of differential impedance, differential reflection loss, and differential insertion loss.

Analysis of Impedance and Stray Inductance for Pulsed Plasma Reactor (펄스 플라스마 반응기에 대한 임피던스 및 누설 인덕턴스 분석)

  • Choi, Young-Wook;Lee, Hong-Sik;Rim, Geun-Hie;Kim, Tae-Hee;Kim, Jong-Wha;Jang, Gil-Hong;Shin, Wan-Ho;Song, Young-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.253-260
    • /
    • 1999
  • In this paper, the impedance characteristic of wire-plate pulsed plasma reactor was investigated by experiment. The experiment have carried out under the several conditions of voltage, wire length and wire-plate distance. The impedance of reactor wad decreased with increasing voltage and wire length. The nature of discharge in reactor was changed from streamer corona to spark with increasing incident energy, from which we understood the critical energy density between the two discharges. Fromthis experiment, we proposed the method for the impedance matching between pulse generator and pulsed plasma reactor. Additionally, we succeeded in the analysis ofstray inductance of 0.5MW reactor using EMTP (ElectroMagnetic Transients Program). This means that EMTP is also useful for the analysis of inevitable stray inductance of forthcoming a large scale reactor.

  • PDF

Measurement Technology of Chamber Impedance for RF Matching (RF 정합 특성 개선을 위한 챔버의 임피던스 측정법)

  • 설용태;이의용;박성진
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.13-17
    • /
    • 2003
  • An adaptor is designed for chamber impedance measurement of plasma process. Copper rod, fixed board and compensation circuit are the major components of the adaptor. An adaptor can be to measure chamber impedance on time unless stopping a process and Data to measure can do the database. We can use it to a criteria data for a failure diagnosis. So developed adaptor could be used for diagnosis the plasma process chamber in semiconductor industry.

  • PDF

Design of Single Layer Radar Absorbing Structures(RAS) for Minimizing Radar Cross Section(RCS) Using Impedance Matching (임피던스정합을 이용한 레이더반사면적 최소화 단층형 전파흡수구조 설계)

  • Jang, Byung-Wook;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.118-124
    • /
    • 2015
  • The design of radar absorbing structures(RAS) is a discrete optimization problem and is usually processed by stochastic optimization methods. The calculation of radar cross section(RCS) should be decreased to improve the efficiency of designing RAS. In this paper, an efficient method using impedance matching is studied to design RAS for minimizing RCS. Input impedance of the minimal RCS for the specified wave incident conditions is obtained by interlocking physical optics(PO) and optimizations. Complex permittivity and thickness of RAS are designed to satisfy the calculated input impedance by a discrete optimization. The results reveal that the studied method attains the same results as stochastic optimization which have to conduct numerous RCS analysis. The efficiency of designing RAS can be enhanced by reducing the calculation of RCS.

6-18 GHz MMIC Drive and Power Amplifiers

  • Kim, Hong-Teuk;Jeon, Moon-Suk;Chung, Ki-Woong;Youngwoo Kwon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.125-131
    • /
    • 2002
  • This paper presents MMIC drive and power amplifiers covering 6-18 ㎓. For simple wideband impedance matching and less sensitivity to fabrication variation, modified distributed topologies are employed in the both amplifiers. Cascade amplifiers with a self-biasing circuit through feedback resistors are used as unit gain blocks in the drive amplifier, resulting in high gain, high stability, and compact chip size. Self impedance matching and high-pass, low-pass impedance matching networks are used in the power amplifier. In measured results, the drive amplifier showed good return losses ($S_11,{\;}S_{22}{\;}<{\;}-10.5{\;}dB$), gain flatness ($S_{21}={\;}16{\;}{\pm}0.6{\;}dB$), and $P_{1dB}{\;}>{\;}22{\;}dBm$ over 6-18 GHz. The power amplifier showed $P_{1dB}{\;}>{\;}28.8{\;}dBm$ and $P_{sat}{\;}{\approx}{\;}30.0{\;}dBm$ with good small signal characteristics ($S_{11}<-10{\;}dB,{\;}S_{22}{\;}<{\;}-6{\;}dB,{\;}and{\;}S_{21}={\;}18.5{\;}{\pm}{\;}1.25{\;}dB$) over 6-18 GHz.

Implementation of Quadrifilar Helical Antenna Using Phase Difference with PCB Feeding Line (PCB 피딩 라인에 의한 위상차를 이용한 Quadrifilar Helical Antenna의 제작)

  • Park, Sang-Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.211-216
    • /
    • 2008
  • Gap fillar antennas are needed for serving the high quality of DMB through the cellular phone by eliminating the shadow regions among buildings or underground. We implement Quadrifilar Helical Antenna using phase difference with PCB feeding lines without coaxial cables and four impedance matching circuits. It is shown that the antenna characteristics is affected by the size and diameter through the simulation process using MicroWave Studio and it is applied for implementing QHA. Experiment results confirm that the performance can be gained as same as the simulation data by using the phase difference with PCB feeding lines without additional impedance matching circuits.

  • PDF

Analysis of Impedance matching circuit for Planar-Type Inductively Coupled Plasma Device (평판형 유도 결합 플라즈마 장치에 대한 Alternate type Impedance matching 회로 분석)

  • Lee, Jong-Kyu;Kwon, D.C.;Yu, D.H.;Yoon, N.S.;Kim, J.H.;Shin, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1933-1935
    • /
    • 2004
  • 본 연구에서는 변압기형 플라즈마 전류 모델을 기초로 한 평판형 유도 결합 플라즈마 장치에 대한 회로를 분석하여 임피던스 매칭 특성을 조사하였다. 장치 임피던스는 collisional surface impedance를 기반으로 계산된 플라즈마 임피던스와 안테나 임피던스로 결정된다. 매칭 network에 사용된 회로는 Altcmatc-typc의 회로이고, 매칭 소자인 $C_T$$C_L$은 임피던스 매칭 조건을 이용하여 계산하였다. 완전 매칭의 경우에는 $C_T$$C_L$을 플라즈마 변수들의 함수로 표현하여 의존성을 분석하고, 불완전 매칭의 경우에는 반사파에 대한 반사계수, 반사율을 계산하였다.

  • PDF