• Title/Summary/Keyword: impedance force control

Search Result 101, Processing Time 0.053 seconds

Internet-based Teleoperation of a Mobile Robot with Force-reflection (인터넷 환경에서 힘반영을 이용한 이동로봇의 원격제어)

  • 진태석;임재남;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.585-591
    • /
    • 2003
  • A virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.

A Study on the Impedance Scaled Tele-Nanomanipulation in a Nanoscale Virtual Environment (나노 스케일 가상환경에서의 나노-원격 조작의 임피던스 스케일링에 관한 연구)

  • Kim, Sung-Gaun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1401-1407
    • /
    • 2006
  • In a haptic interface system with a nanoscale virtual environment (NVE) using an atomic force microscope (AFM), impedance scaling is important. In order to explicitly derive the relationship between performance and impedance scaling factors, a nanoscale virtual coupling (NSVC) concept and a selection method of scaling factors of velocity (or position) and force are introduced. An available scaling factor region is represented based on Llewellyn's absolute stability criteria and the physical limitation of the haptic device. Experiments have been performed for tele-nanomanipulation tasks such as positioning, indenting and nanolithography with available force scaling factor in the NVE.

Experimental Studies on Neural Network Force Tracking Control Technique for Robot under Unknown Environment (미정보 환경 하에서 신경회로망 힘추종 로봇 제어 기술의 실험적 연구)

  • Jeong, Seul;Yim, Sun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.338-344
    • /
    • 2002
  • In this paper, neural network force tracking control is proposed. The conventional impedance function is reformulated to have direct farce tracking capability. Neural network is used to compensate for all the uncertainties such as unknown robot dynamics, unknown environment stiffness, and unknown environment position. On line training signal of farce error for neural network is formulated. A large x-y table is built as a test-bed and neural network loaming algorithm is implemented on a DSP board mounted in a PC. Experimental studies of farce tracking on unknown environment for x-y table robot are presented to confirm the performance of the proposed technique.

Dynamic Obstacle Avoidance of a Mobile Robot Using a Collision Vector (충돌 벡터를 이용한 이동로봇의 동적 장애물 회피)

  • Seo, Dae-Geun;Lyu, Eun-Tae;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.631-636
    • /
    • 2007
  • An efficient obstacle avoidance algorithm is proposed in this paper to avoid dynamic obstacles using a collision vector while a tele-operated mobile robot is moving. For the verification of the algorithm, an operator watches through a monitor and controls the mobile robot with a force-reflection joystick. The force-reflection joystick transmits a virtual force to the operator through the Inter-net, which is generated by an adaptive impedance algorithm. To keep the mobile robot safe from collisions in an uncertain environment, the adaptive impedance algorithm generates the virtual force which changes the command of the operator by pushing the operator's hand to a direction to avoid the obstacle. In the conventional virtual force algorithm, the avoidance of moving obstacles was not solved since the operator cannot recognize the environment realistically by the limited communication bandwidth and the narrow view-angle of the camera. To achieve the dynamic obstacle avoidance, the adaptive virtual force algorithm is proposed based on the collision vector that is a normal vector from the obstacle to the mobile robot. To verify the effectiveness of the proposed algorithm, mobile robot navigation experiments with multiple moving obstacles have been performed, and the results are demonstrated.

3DOF Force-Reflection Interface (3자유도 힘 반향 역감장치)

  • 강원찬;김동옥;신석두;김영동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.455-461
    • /
    • 1999
  • In this paper, we present the 3DOF force-rei1ecting interface which allows to acquire force of objc'Ct within a a virtual environment. This system is comlxlsed of device, virtual environment model, and force-rei1ecting r rendering algorithm. We design a J DOF force reflecting device using the pc$\alpha$allel linkage, torque shared by W wire, and the controller of system applied by impedance control algorithm. The force reflecting behaviour i implemented as a function position is equivalent to controlling the mechanical impedance felt by the user. E Especially how force should be supplied to user, we know using a God-Object algorithm As we experiment a system implement$\varepsilon$d by the interface of 3D virtual object and 3DOF force reJll'Cting i interface, we can feel a contact, non contact of :)D virtual object surface and sensin앙 of push button model.utton model.

  • PDF

Force-Reflecting Teleoperation for Grinding Work

  • Choo, Jung-Hoon;Lee, Jae-Yong;Lee, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.824-828
    • /
    • 2003
  • This paper explains problems of force-reflecting teleoperation grinding work and proposes some methods to solve those. For stable contact between robot tool(grindstone) and contact surface the mechanical impedance force control is used. The sliding phenomenon of grindstone has been appeared at the contact surface during the grinding work. The sliding problems caused by friction and rotation of grindstone are eliminated by using tangential direction sliding compensation control. The rotation force of grindstone makes the tool move to tangential direction along the surface suddenly even though an operator pushes the tool only in normal direction to the surface. Normal direction force control is applied for grinder not to roll and fracture on the grinding surface. Vibration problem of grindstone is decreased by second order low-pass filter. Therefore we can precise grinding work at the grinding surface and feel the reality

  • PDF

Double Actuator Unit based on the Planetary Gear Train Capable of Position/Force Control (위치/힘 제어가 가능한 유성기어 기반의 더블 액츄에이터 유닛)

  • Kim, Byeong-Sang;Park, Jung-Jun;Song, Jae-Bok;Kim, Hong-Seok
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Control of a robot manipulator in contact with the environment is usually conducted by the direct feedback control using a force-torque sensor or the indirect impedance control. In these methods, however, the control algorithms become complicated and the performance of position and force control cannot be improved because of the mechanical properties of the passive components. To cope with such problems, redundant actuation has been used to enhance the performance of position control and force control. In this research, a Double Actuator Unit (DAU) is proposed, with which the force control algorithm can be simplified and can make the robot ensure the safety during the external collision. The DAU is composed of two actuators; one controls the position and the other modulates the joint stiffness. Using this unit, it is possible to independently control the position and stiffness. The DAU based on the planetary gears is investigated in this paper. Performance using the DAU is also verified by various experiments. It is shown that the manipulator using this mechanism provides better safety during the impact with the environment by reducing the joint stiffness appropriately on detecting the collision of a manipulator.

  • PDF

Compliant motion controllers for kinematically redundant manipulators

  • Park, Jonghoon;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.456-459
    • /
    • 1995
  • The problem of compliant motion control using a redundant manipulator is addressed in this article. Specifically, a hybrid-control type and impedance-control type controllers are extended to general redundant manipulators based on the kinematically decomposed and geometrically compatible modeling of its joint space. In the case of the hybrid controller, it leads to the linear and decoupled closed-loop dynamics in the three motion spaces, that is the motion-controlled, force-controlled, and the null motion-controlled spaces of the redundant manipulator. When the proposed impedance controller is applied, the decoupled impedance models in three motion spaces are obtained. The superiority of the proposed controllers is verified with the numerical experiments.

  • PDF

Estimation of human impedance and its application to collaboration work with robot (인간의 임피던스 추정 및 로봇과의 협력 작업으로의 적용)

  • 홍석규;김창호;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1812-1815
    • /
    • 1997
  • This paper treats the estimation of human impedance and their application to collaboration work robot. Initially, we performa an experiment at whcich teh human becomes a slave and the robot behaves like a master having F/T sensor on its end. the human impedance expressed interms of mass, damping, and stiffness properties are estimated based on the force data measured by F/T sensor and the positiion data of the robot. To show the effectiveness of the estimated human impedance, we perform the second experiment at which the roles of the human and the robot are reversed. It is shown that the robot using the estimated human impedance follows the trajectory commanded by human very smoothly.

  • PDF