• 제목/요약/키워드: impact-response test

검색결과 464건 처리시간 0.025초

Impact test of a centrifugal pump used in nuclear power plant under aircraft crash scenario

  • Huang, Tao;Chen, Mengmeng;Li, Zhongcheng;Dong, Zhanfa;Zhang, Tiejian;Zhou, Zhiguang
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1858-1868
    • /
    • 2021
  • Resisting an accidental impact of large commercial aircrafts is an important aspect of advanced nuclear power plant (NPP) design. Especially after the 9·11 event, some regulations were enacted, which required the design of NPPs should consider the accidental impact of large commercial aircrafts. Normal working of equipment is important for stopping reactor under an impact when an NPP is in operation. However, there is a lack of reliable analysis and research on the impact test of nuclear prototype equipment. Therefore, in order to study the response of the equipment under high acceleration impact, a centrifugal pump is selected as the research object to perform the impact test. A horizontal half-sinusoidal pulse wave was applied to the working pump. The test results show that the horizontal response of the motor and flange is greater compared to other parts, as well as the vertical response of the coupling. The stress response of the pump body support and motor support is high, hence these parts should be considered in the design of the pump. Finally, combined with the damage and stress evaluation results of the pump under different amplitudes, the ultimate impact acceleration that the pump can withstand is given.

임팩에코 응답신호를 적용한 건설재료 비파괴 압축강도 산정 (Nondestructive Assessment of Compressive Strength of Construction Materials Using Impact-Echo Response Signal)

  • 손무락;김무준
    • 한국지반환경공학회 논문집
    • /
    • 제18권8호
    • /
    • pp.17-21
    • /
    • 2017
  • 본 논문은 암석 및 콘크리트 등의 건설재료의 비파괴 압축강도를 산정하기 위하여 재료타격 시 발생하는 임팩에코 응답신호를 모두 측정하고 이를 누적한 전체 사운드 신호에너지의 이용성에 관해 파악하고 그 결과를 제시하는 것이다. 본 연구에서는 이를 위해서 타격장치를 고안하였고 이를 이용하여 재료를 회전 자유낙하에 의해 초기 타격토록 하고 이후 반발작용에 의한 반복타격이 소멸될 때까지 발생할 수 있도록 하였다. 본 연구에서는 서로 다른 강도를 가지도록 배합된 콘크리트 시편에 대하여 실험을 실시하고 임팩에코 응답신호를 측정하였다. 시편별 산정된 전체 사운드 신호에너지는 직접압축강도시험을 통한 시편별 압축강도와 상호 비교하였다. 비교결과, 임팩에코 응답신호를 통해 산정된 전체 사운드 신호에너지는 시편의 직접압축강도와 직접적인 관계가 있다는 것을 확인하였으며, 이를 통해 암석 및 콘크리트 등의 건설재료의 압축강도는 재료타격 시 발생하는 임팩에코 응답신호로부터 산정된 전체 사운드 신호에너지를 이용하여 비파괴적으로 산정할 수 있음을 알 수 있었다.

LNG 화물창 단열구조의 슬로싱 충격응답 간이해석법에 관한 연구 (A Study on Simplified Sloshing Impact Response Analysis for Membrane-Type LNG Cargo Containment System)

  • 노인식;기민석;김성찬
    • 대한조선학회논문집
    • /
    • 제48권5호
    • /
    • pp.451-456
    • /
    • 2011
  • To ensure structural integrity of membrane type LNG tank, the rational assessment of the sloshing impact responses of tank structures should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the resulting structural responses show very complex behaviors accompanied with fluid structure interaction. So it is not easy to estimate them accurately and immense time consuming calculation process would be necessary. In this research, a simplified method to analyse the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was studied. The proposed technique based on the concept of linear combination of the triangular response functions which are the transient responses of structures under the unit triangular impact pressure acting on structures. The validity of suggested method was verified through the example calculations and applied to the dynamic structural response analysis of a real Mark III membrane type insulation system using the sloshing impact pressure time histories obtained by model test.

복합적층판의 저속충격시험 및 거동에 대한 실험적 연구 (An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates)

  • 최익현;홍창선
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.

폴리우레탄 폼의 동적 응답에 미치는 밀도 및 온도의 영향 (Dynamic Response of Polyurethane Foam with Density and Temperature Effects)

  • 황병관;김정현;김정대;이제명
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.291-297
    • /
    • 2019
  • Polyurethane foam is the most efficient, high-performance insulation material, used for liquefied natural gas carrier (LNGC) insulation. Because LNGC is exposed to sloshing impact load due to ship motion of 6 degrees of freedom, polyurethane foam should be sufficient dynamic properties. The dynamic properties of these polyurethane foam depends on temperature and density. Therefore, this study investigates the dynamic response of polyurethane foam for various temperature($25^{\circ}C$, $-70^{\circ}C$, $-163^{\circ}C$) and density($90kg/m^3$, $113kg/m^3$, $134kg/m^3$, $150kg/m^3$) under drop impact test with impact energy of 20J, 50J, and 80J. For dynamic response was evaluated in terms of peak force, peak displacement, absorb energy, and the mechanical property with minimized density effects. The results show the effect of temperature and density on the polyurethane foam material for the dynamic response.

주파수 응답함수를 이용한 콘크리트 슬래브 가속도 및 바닥충격소음 예측 (Prediction of Concrete Slab Acceleration and Floor Impact Noise Using Frequency Response Function)

  • 문대호;박홍근;황재승
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.483-492
    • /
    • 2014
  • Uncomfortable feelings of occupants by indoor floor impact noise in a residential building are not accurately represented by the floor impact noise from a standard impact source. It is due to the characteristics of standard impact sources, which are different from the impact forces produced by occupants. It varies significantly by impact source, and it is not easy to be replicated for testing. As a result, the indoor floor impact noise under different acoustic conditions cannot be directly compared. Using frequency response function(FRF), which represents the input-output relationships of a dynamic system, it is possible to examine the characteristics of the system. Especially, FRF can predict the response of a linear dynamic system subjected to various excitation. To determine the relationship between impact force and the corresponding response of dynamic system in residential building, the acceleration response of a concrete slab and the floor impact noise in the living room, produced by bang-machine and rubber-ball excitation, were measured. The test results are compared to the estimates based on FRF and impact force spectrum.

충격력 응답신호를 이용한 비파괴 압축강도 산정에 관한 기초연구 (A Pilot Study on Nondestructive Assessment of Compressive Strength Using Impact Force Response Signal)

  • 손무락;최윤서
    • 한국지반환경공학회 논문집
    • /
    • 제20권4호
    • /
    • pp.5-9
    • /
    • 2019
  • 본 논문은 건설재료(암석, 콘크리트, 목재 등) 등의 압축강도를 비파괴적으로 산정하기 위하여 재료타격 시 발생하는 충격력에 대한 응답신호를 모두 측정하고 이를 누적한 전체 충격력 신호에너지의 이용성 및 가능성에 관해 기초연구를 수행하고 그 결과를 제시하는 것이다. 본 연구에서는 이를 위해서 충격 및 측정장치를 고안하였고 이를 이용하여 측정대상물을 회전 자유낙하에 의해 초기 타격토록하고 이후 반발작용에 의한 반복타격이 소멸될 때까지 발생할 수 있도록 하였다. 본 연구에서는 서로 다른 강도를 가지는 목재와 암석시편에 대하여 충격력실험을 실시하고 발생신호를 측정하였다. 시편별 산정된 전체 충격력 신호에너지는 직접압축강도시험을 통한 시편별 압축강도와 상호 비교하였다. 비교결과, 충격력 응답신호를 통해 산정된 전체 충격력 신호에너지는 시편의 직접압축강도와 직접적인 관계가 있다는 것을 확인하였으며, 이를 통해 다양한 건설재료의 압축강도는 재료타격 시 발생하는 충격력 응답신호로부터 산정된 전체 충격력 신호에너지를 이용하여 비파괴적으로 산정할 수 있음을 알 수 있었다.

Construction and Evaluation of Scaled Korean Side Impact Dummies

  • Kim, Seong-Jin;Kwon Son;Park, Kyung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1894-1903
    • /
    • 2003
  • It is necessary to have a dummy that describes the anthropometry of a victim with accuracy. This study presents three scaled side impact dummies constructed for the use of MADYMO. They represent five, fifty and ninety-five percentile Korean males ranged from the age of 25 through 39. Thirty-five anthropometric data were used to scale input files required for MADYSCALE. Geometries, inertia, joints and other parameters for dummies were scaled based on the configurations of EuroSID-1. This study proposes the lateral impact response requirements for head, thorax and pelvis of Korean side impact dummies. A lateral drop impact test was conducted for the head at the height of 200 mm. Lateral pendulum impact tests were also carried out for thorax and pelvis at three specific impact velocities. All these test results were obtained from simulation based on MADYMO. All the procedures of the three tests followed the requirement of ISO/TR 9790.

Numerical study on the impact response of SC walls under elevated temperatures

  • Lin Wang;Weiyi Zhao;Caiwei Liu;Qinghong Pang
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.345-352
    • /
    • 2023
  • A thermal-mechanical coupling finite element model of the steel-plate concrete composite (SC) wall is established, taking into account the strain rate effect and variation in mechanical and thermal properties under different temperatures. Verifications of the model against previous fire test and impact test results are carried out. The impact response of the SC wall under elevated temperatures is further investigated. The influences of the fire exposure time on the impact force and displacement histories are discussed. The results show that as the fire exposure time increases, the deflection increases and the impact resistance decreases. A formula is proposed to calculate the reduction of the allowable impact energy considering the fire exposure time.

Acceleration amplification characteristics of embankment reinforced with rubble mound

  • Jung-Won Yun;Jin-Tae Han;Jae-Kwang Ahn
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.157-166
    • /
    • 2024
  • Generally, the rubble mound installed on the slope embankment of the open-type wharf is designed based on the impact of wave force, with no consideration for the impact of seismic force. Therefore, in this study, dynamic centrifuge model test results were analyzed to examine the acceleration amplification of embankment reinforced with rubble mound under seismic conditions. The experimental results show that when rubble mounds were installed on the ground surface of the embankment, acceleration response of embankment decreased by approximately 22%, and imbalance in ground settlement decreased significantly from eight to two times. Furthermore, based on the experimental results, one-dimensional site response (1DSR) analyses were conducted. The analysis results indicated that reinforcing the embankment with rubble mound can decrease the peak ground acceleration (PGA) and short period response (below 0.6 seconds) of the ground surface by approximately 28%. However, no significant impact on the long period response (above 0.6 seconds) was observed. Additionally, in ground with lower relative density, a significant decrease in response and wide range of reduced periods were observed. Considering that the reduced short period range corresponds to the critical periods in the design response spectrum, reinforcing the loose ground with rubble mound can effectively decrease the acceleration response of the ground surface.