DOI QR코드

DOI QR Code

임팩에코 응답신호를 적용한 건설재료 비파괴 압축강도 산정

Nondestructive Assessment of Compressive Strength of Construction Materials Using Impact-Echo Response Signal

  • Son, Moorak (Department of Civil Engineering, Daegu University) ;
  • Kim, Moojun (Department of Civil Engineering, Daegu University)
  • 투고 : 2017.06.27
  • 심사 : 2017.07.25
  • 발행 : 2017.08.01

초록

본 논문은 암석 및 콘크리트 등의 건설재료의 비파괴 압축강도를 산정하기 위하여 재료타격 시 발생하는 임팩에코 응답신호를 모두 측정하고 이를 누적한 전체 사운드 신호에너지의 이용성에 관해 파악하고 그 결과를 제시하는 것이다. 본 연구에서는 이를 위해서 타격장치를 고안하였고 이를 이용하여 재료를 회전 자유낙하에 의해 초기 타격토록 하고 이후 반발작용에 의한 반복타격이 소멸될 때까지 발생할 수 있도록 하였다. 본 연구에서는 서로 다른 강도를 가지도록 배합된 콘크리트 시편에 대하여 실험을 실시하고 임팩에코 응답신호를 측정하였다. 시편별 산정된 전체 사운드 신호에너지는 직접압축강도시험을 통한 시편별 압축강도와 상호 비교하였다. 비교결과, 임팩에코 응답신호를 통해 산정된 전체 사운드 신호에너지는 시편의 직접압축강도와 직접적인 관계가 있다는 것을 확인하였으며, 이를 통해 암석 및 콘크리트 등의 건설재료의 압축강도는 재료타격 시 발생하는 임팩에코 응답신호로부터 산정된 전체 사운드 신호에너지를 이용하여 비파괴적으로 산정할 수 있음을 알 수 있었다.

This paper is to grasp the use of impact-echo response signal induced from impacting an object for the assessment of compressive strength of construction materials nondestructively and to propose the test results. For this study, an impact device was devised and used for impacting an object by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Concrete test specimens which had been mixed for different strengths were tested and the impact echo response signal was measured for each test specimen. The total sound signal energy which is assessed from integrating the impact-echo response signal was compared with the directly measured compressive strength for each specimen. The comparison showed that the total sound signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of construction materials can be assessed nondestructively using total sound signal energy which is assessed from integrating the impact-echo response signal induced from impacting an object.

키워드

참고문헌

  1. ASTM C805-13 (2013), Standard test method for rebound number of hardened concrete, American Society for Testing and Materials, West Conshohocken, PA.
  2. Carino, N. J. and Sansalone, M. (1984), Pulse-echo method for flaw detection in concrete, NBS Technical Note 1199, U.S. Dept. of Commerce/National Bureau of Standards 34.
  3. FHWA (1997), Guide to nondestructive testing of concrete, Federal Highway Administration, FHWA-SA-97-105 written by G.I. Crawford, pp. 1-58.
  4. IAEA (2002), Guidebook on non-destructive testing of concrete structures, International Atomic Energy Agency, Training course series No. 17, Vienna, Austria, pp. 1-231.
  5. Naik, T. R. and Malhotra, V. M. (1991), The ultra-sonic pulse velocity method, Handbook on Nondestructive Testing of Concrete, CRC Press, Inc., Boca Raton, FL, pp. 169-202.
  6. Patil, N. R. and Patil, J. R. (2008), Non-destructive testing (NDT) advantages and limitations, SRES College of Engineering, Kopargaon, Maharashtra - 423 603, pp. 71-78.