• Title/Summary/Keyword: impact sound insulation

Search Result 119, Processing Time 0.025 seconds

Indoor Noise: the present state and an action plan (실내소음분야 : 현황 문제점 및 관리방안)

  • Kim, Ha-G.;Kim, Hong-C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.107-109
    • /
    • 2006
  • Since the apartment was built in 1961, the amount of its supply has been increased greatly, especially from the late 70's. The ratio of apartment housing to detached housing was already over 65% in 2000, and now the apartment becomes the most general type in domestic dwellings. But from 90's, the residents of apartment housing have been dissatisfied with the indoor noises and have issued civic petitions. Some national assemblymen front new towns where a high rise apartment is common are interested in This problem, and promise that they try to solve it. The government has also enacted the related regulations. This paper presents the present state and action plans of indoor noise in dwellings. Details on these will be demonstrated at the presentation.

  • PDF

An Experimental Study on the Prediction Method of Light Weight Floor Impact Sound Insulation Performance of Apartment Floor Structures through Mini-Laboratory Tests (축소실험실을 이용한 바닥완충구조의 경량충격음 차음성능 예측방법에 관한 실험적 연구)

  • 송민정;장길수;김선우
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.82-96
    • /
    • 2000
  • The purpose of this study is to figure out the relationship between the mini-laboratory and the reverberation room for the domestic floor structures which are practically constructed in apartment houses. For this purpose, seven specimen which were varied in structures and thicknesses were tested in Chonnam National University reverberation room and in the artificial mini-laboratory which is the $\farc{1}{3}$ scale model of the former. From the result of this study, it was proved that there is a good correlation between the mini-laboratory and the reverberation room for the apartment floor structures as well as floorcovering PVC. The result of this study could save the labor and the time, etc.

  • PDF

Deviation of Heavy-Weight Floor Impact Sound Levels According to Measurement Positions (마이크로폰의 위치에 따른 중량 바닥충격음레벨의 편차)

  • Oh Yang-Ki;Joo Moon-Ki;Park Jong-Young;Kim Ha-Geun;Yang Kwan-Seop
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.49-55
    • /
    • 2006
  • Measurement of impact sound insulation of floor, by current Korean Standard KS F 2810-2. is to be made with peak levels over 4 point in a receiving room. But it is often the case that there is inconsistency in results at various receiving points in the receiving room. Such variations obviously have effects on the repeatability and reproducibility of measured data. The result shows that there are even 10 dB deviations in 63Hz octave band frequency range and relatively less variations are occurred in other low frequency ranges. Such variations seems to be coming from modal overlaps of the receiving room. According to current rating method of floor impact sound. KS F 2863-2, that may affect on the single number latins scheme. From the result of tests in this study, there are 2dB to 6dB differences in the sin91e number with the combination of measurement points. This means that the reduction of measurement variations from the microphone positions is needed for a better credibility of measurement results.

The Effect of Dynamic Property of Absorbing Sheet on the Amplification of Heavy Weight Floor Impact Noise (완충재의 동특성에 따른 중량충격음 증폭에 관한 해석적 연구)

  • Hwang, J.S.;Moon, D.H.;Park, H.G.;Hong, S.G.;Hong, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.651-657
    • /
    • 2010
  • Previous experimental results performed by many researchers for a couple of decades in South Korea have shown that an absorbing sheet inserted in a conventional floating slab system for thermal insulation or vibration absorption may amplify the vibration of the slab system at specific frequency ranges depending on the material properties of the sheet. The amplified vibration, consequently, results in the heavy weight floor impact noise exceeding the sound level limit for an apartment house, 50 dB. In this study, the amplification mechanism is examined through numerical analysis and a new slab system is proposed to reduce the amplification and control the noise. The new slab system consists of studs connecting the base slab and upper concrete finishing yielding the dramatically increased stiffness of the slab. The numerical simulation is performed to investigate the effect of the slab system with studs on the vibration and noise control. The results show that the performance of the slab is sensitive to the number and location of studs, and the heavy weight floor impact noise can be reduced up to 6~7 dB compared to the conventional slab system at the optimal stud location.

A Reduction Effect in Noise Reflection by Different Shapes of Soundproofing-panel (도로소음원에 대한 방음패널 형상별 반사소음 저감효과)

  • Kim, Ilho;Park, Taeho;Chang, Seoil;Lee, Haein
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.120-125
    • /
    • 2015
  • With rapid urbanization, the volume of traffic in urban area has been significantly increased. This in turn led to problem which can be described as Road Traffic Noise. Currently, to alleviate the road traffic noise damage, a demand for installation of soundproofing walls is rising. Among different shapes of soundproof walls being installed, the reflection-type acoustical insulation panel is highly drawing attentions of residents due to the fact that it does not obstruct their field of vision in contrast with the opaque acoustical insulation panel. On the other hand, improving the soundproofing wall of the reflection-type acoustical insulation barrier panel needs to be focused on since it has a possibility to cause a secondary damage by reflected sounds. Therefore, in this research, study has been carried out to improve the forms in order to minimize travelling of reflected sounds through changing the frontal surface shape and geometrical shape of the reflection-type soundproofing panel. A result from comparison between the normal reflection-type soundproofing panel and the improved soundproofing panel, with reduction effects in the noise reflection, showed that the curved type of soundproofing panel has an impact on reducing the noise up to 1.5 dB. Furthermore, from the research conducted, it appears that the increase and decrease in the reflected sounds can be changeable depending on various design factors. Thus, it turns out that the study shows a potential possibility to develop a reduction technology of the reflected sounds pertaining to overall condition on the soundproofing walls.

Research on simple measurement method of floor finishing materials to predict lightweight floor impact noise reduction performance in apartment houses (공동주택 경량 바닥충격음 저감성능 예측을 위한 바닥마감재 간이측정 방법 연구)

  • Min-Woo Kang;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.594-602
    • /
    • 2023
  • To date, research on heavy floor impact noise has mainly been conducted. The reason is that in the case of lightweight floor impact noise, sufficient performance could be secured with only the floating floor structure and floor finishing materials. In the case of heavy floor impact noise in a floating floor structure, the reduction performance can be predicted to some extent by measuring the dynamic elasticity of the floor cushioning material. However, with the recent introduction of the post-measurement system, various floor structures are being developed. In particular, many non-floating floor structures that do not use cushioning materials are being developed. In floor structures where cushioning materials are not used, the finishing material will have a significant impact on lightweight floor impact noise. However, research on floor finishing materials is currently lacking. In this study, as a basic research on the development of various floor finishing materials for effective reduction of lightweight floor impact noise, various materials used as floor finishing materials for apartment complexes were selected, the sound insulation performance of lightweight floor impact noise was measured in an actual laboratory, and vibration characteristics were identified through simple experiments. The purpose was to confirm the predictability of light floor impact noise.

Study on Preliminary Influence Analysis of Construction Noise and Vibration (건설 소음.진동의 사전 영향성 분석에 관한 연구)

  • Ahn, Myung-Seok;Kim, Hwa-Il;Park, Ju-Han
    • Explosives and Blasting
    • /
    • v.32 no.2
    • /
    • pp.25-30
    • /
    • 2014
  • Although the construction noise and vibration are transient and intermittent, their impact on the surrounding environment is huge. Since the construction equipment noise and vibration is usually transmitted because of the long distance, the sound insulation and the proper design of anti-vibration measures are very difficult. The regulation requires that the noise and vibration caused by the construction equipments should be measured within 30m from the source, whereas the blasting noise and vibration should be measured at least 60m and 160m away from the source, respectively. Instead of the 2D modelling mainly conducted so far, the 3D analysis of noise and vibration with the consideration of the height and size of the building, mountains and hills in the vicinity of the source is necessary.

An Evaluation on the Properties of the Hardened Lightweight Cement Using the Polyethylene Tube (폴리에틸렌 튜브를 혼입한 경량 시멘트 경화체의 기초물성 평가)

  • Kim, Sae-Young;Jeon, Bong-Min;Kim, Hyo-Youl;Oh, Sang-Gyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.57-60
    • /
    • 2006
  • This study proposes the physical properties of the hardened lightweight cement using the polyethylene tube and to make the fundamental data regarding a new lightweight concrete development. The aerated concrete is displaying various effects such as lightweight, insulation characteristic and it is coming to be widely applied the slab layer of apartment as an insulating material but currently the aerated concrete has many problems. Therefore, demonstrating similar property of former aerated concrete and improving the defects, developing new hardened cement is needed. In this study, we predict adopting possibility of hollow core polyethylene tube, as a material to make cement hardening containing a lot of void. So we changed the mixing ratio, a diameter and length of the polyethylene tube and improved the compressive strength and unit capacity weight of the lightweight cement hardening body. From the test results, we judge that the aerated concrete is a developmental possibility.

  • PDF

Fabrication and Characterization of Aluminum Honeycomb Panel (경량 알루미늄 허니콤 판재의 제작 및 특성 평가)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.666-671
    • /
    • 2018
  • A honeycomb panel is a plate made by attaching two surface plateson eitherside of a honeycomb core. The honeycomb plate hasexcellent specific strength and energy absorption and is suitable for use in regions where good impact resistance is required. Recently, with the increasing the need for a lightweight design to facilitate transportation, numerous studies have been conducted using aluminum honeycomb plates as body materials for vehicles such as automobiles and high-speed trains. In addition, honeycomb plates have excellent sound deadening properties, as well as excellent heat insulation and durability. Savings in weight using lightweight materials such as aluminum alloy for honeycomb panel's skin can lead to increase fuel economy and reduction in air pollution. In this study, in order to improve the design technology of the honeycomb plate material, the manufacturing technology of the aluminum honeycomb core and honeycomb plate material and various mechanical properties of the honeycomb plate were evaluated. From the results, it was found that the design of the manufacturing process of the aluminum honeycomb plate, as well as itsproduction and characteristics, were improved. The resulting excellent energy absorption capability of the honeycomb plate was due to the repetitive core buckling, indicating that the higher the compressive strength, the higher the strength per bonded area.