• Title/Summary/Keyword: impact simulation

Search Result 2,352, Processing Time 0.028 seconds

Effects of 3S-BIS (3S Business Intelligence Systems) for Nurses (간호사를 위한 3S-BIS (Business Intelligence Systems) 교육 프로그램 효과)

  • Lim, Ji Young;Kim, Juhang;Kim, Seulki
    • Journal of Home Health Care Nursing
    • /
    • v.30 no.3
    • /
    • pp.287-297
    • /
    • 2023
  • Purpose: This study aimed to investigate the impact of the 3S-Smart, Simple & Speed Business Intelligence Systems(3S-BIS) program on various aspects including simulation design assessment, simulation education assessment, satisfaction among education participants, academic self-efficacy, entrepreneurship, and entrepreneurial competency for nurses. Method: This research was a non-equivalent control trial design study using two groups. 23 participants in experimental group, and 22 in the control group. Data were collected three intervals: before program, immediately after the program, four weeks later. Results: The experimental group showed significantly higher values across parameters, including simulation design assessment, simulation education assessment, satisfaction among education participants, academic self-efficacy, entrepreneurship, and entrepreneurial competency. Conclusion: The 3S-BIS program has shown a positive impact on improving nursing start-up competency. Applying 3S-BIS can be effectively used across all ranges of nurses and is recommended.

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

Modeling and Analysis of a Hydraulic Breaker Considering Elastic Impact between the Piston and the Chisel (유압브레커의 모델링 및 피스톤과 치즐간의 탄성충돌을 고려한 해석)

  • 고승환;임종혁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.338-347
    • /
    • 1995
  • Equations of motion and continuity equations of a hydraulic breaker are derived. Hydraulic pressures are defined with 6 state variables corresponding to 6 control volumes. Impact analysis procedure of the piston and chisel is developed based on the finite element nodal displacement description. Computer simulation is performed with given design parameters and the results are compared with experimental results.

Optimal control of impact machines using neural networks

  • Sasaki, Motofumi;Nakagawa, Makoto;Koizumi, Kunio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.91-94
    • /
    • 1995
  • A newly developed discrete-time control design method for impact machines is proposed. It is composed of identification and control using neural networks, where the optimal controller with saturationn and no use of velocity measurements is obtained. By computer simulation, the proposed method is demonstrated to be effective: as the training progresses, the cost function becomes smaller, the proposed control is superior to PID control tuned with Ziegler-Nichols (Z-N) parameters; robust performance with respect to uncertainty, disturbances and working time is so good.

  • PDF

Simulation of Turbid Water According to Watershed Runoff and Withdrawal Type in a Constructing Reservoir (건설 예정인 댐에서 유역유출과 취수형태에 따른 탁수의 거동 예측)

  • Park, Jae-Chung;Choi, Jae-Hun;Song, Young-Il;Yu, Kyung-Mi;Kang, Bo-Seung;Song, Sang-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.247-257
    • /
    • 2010
  • Watershed runoff and turbid water dynamics were simulated in the Youngju Dam, being constructed. The runoff flow and suspended solids were simulated and then thermal stratification and turbid water current in the reservoir were predicted by HSPF and CE-QUAL-W2 model, respectively. Considering selective withdrawal, we hypothesized 3 withdrawal types from the dam, i.e. surface layer, middle layer and the lowest layer. The maximum concentration of SS was 400mg/L in reservoir and it was decreased by the withdrawal. The inflowed turbid water fell to 30 NTU after 12 days regardless of the withdrawal types, but the surface layer withdrawal was a better type at turbid water discharge than the others. In current environmental impact assessment(EIA), we concluded that runoff and reservoir water quality predicted by HSPF and CE-QUAL-W2 was desirable, and appropriate parameters were selected by continous monitoring after EIA.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

Development of Vehicle Members with Spot Welded Thin-wall Section for Optimum Impart Characteristic -Based on Collapse Characteristics on the Varied Impact Velocities- (최적 충격특성에 갖는 차체구조용 점용접 박육단면부재의 개발 -충격속도변화에 따른 압궤특성을 중심으로-)

  • Yang, In-Yeong;Cha, Cheon-Seok;Gang, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1131-1138
    • /
    • 2001
  • This paper concerns the crashworthiness of the widely used vehicle structure, the spot welded hat and double hat shaped section members, which are excellent on the point of the energy absorbing capacity and low production cost. The target of this paper is to analyze the energy absorption capacity of the structure against the front-end collision, and to obtain useful information for designing stage. Changing the spot weld pitches on the flanges, the hat and double hat shaped section members were tested on the axial collapse loads in impact velocities of 4.72m/sec, 6.54m/sec, 7.19m/sec and 7.27m/sec. To efficiently review the collapse characteristics of these sections, the simulation have been carried out using explicit FEM package, LS-DYNA3D. The solutions are compared with results from the impact collapse experiments.

A Study on the Dynamic and Impact Analysis of Side Kick in Taekwondo (태권도 옆차기 동작의 동력학해석과 충격해석에 관한 연구)

  • Lee, Jung-Hyun;Han, Kyu-Hyun;Lee, Hyun-Seung;Lee, Eun-Yup;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Taekwondo is a martial art form and sport that uses the hands and foot for attack and defense. Taekwondo basic motion is composed of the breaking, competition and poomsea motion. In the side kick among the competition motion, the impact force is larger than other kinds of kicks. The side kick with the front foot can be made in two steps. In the first step, the front foot is stretched forward from back stance free-fighting position. For the second step, the rear foot is followed simultaneously. Then, the kick is executed while entire body weight rests on the rear foot. In this paper, impact analysis of the human model for hitting posture is carried out. The ADAMS/LifeMOD is used in hitting modeling and simulation. The simulation model creates the human model to hit the opponent. As the results, the dynamic analysis of human muscle were presented.

Estimate for Ensuring sight Distance of Curve Section from Consideration of the Environmental Impact Assessment based on the 3D GIS (3차원 GIS기법으로 환경영향을 고려한 곡선부 시거 안정성 분석)

  • Choi Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.700-705
    • /
    • 2006
  • The latest system of GIS has been changing from 2 dimension to 3 dimension. According to the rapid growth of the fields linked to 3D GIS, 3D GIS has variously affected the public field, the national defense field. and the industrial field. This study estimated sight distance safety of curve section considering the environmental impact based on 3D GIS. Sight distance is calculated from the relation between road which keeps the three-dimension character and driver gaze, so it needs to consider both plane and vertical for the accurate measuring. This study made analysis of the sight distance through considering the environmental impact with driving simulation of design speed 80km/h and running speed 60-120km/h.

A Study on the Evaluation of Motorcycle Jacket with Built-in Airbag (에어백 장착 모터사이클 쟈켓의 성능 실험방법 연구)

  • Do Wol-Hee;Choi Hei-Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.6
    • /
    • pp.837-846
    • /
    • 2005
  • The purpose of this study is to suggest a standard of guidance for testing the performance and safety of motorcycle jacket with built-in airbag. The method of testing were as follows: The effects of the motorcycle jacket with built-in airbag are experimentaly investigated according to neck injury of FMVSS 208. The experiment consists of the crash simulation test by shield and the impact test. The head and neck injuries are evaluated based on industrial standards. Also, the displacements of the head and neck and chest are observed by film analysis. Using the results of the crash simulation test, neck injury$(N_ij)$ is discussed and the peak chest deflection of the results of the impact test, chest injury is pursued. Neck injury$(N_ij)$ of the result of the crash test show that the chance of a serious wound is $18\%$ if rider wear the R&D motorcycle jacket with built-in airbag(Type A). Chest injury is expected by peak chest deflection of the result of the impact test. The result of the peak chest deflection show that the reduction effect in chest injury of Type A motorcycle jacket is $10.3\%$.