• Title/Summary/Keyword: impact side

Search Result 793, Processing Time 0.022 seconds

Light-weight Design with a Simplified Center-pillar Model for Improved Crashworthiness (측면충돌 성능 향상을 위한 고강도 강판의 적용 및 단순 센터필러 모델의 최적경량설계)

  • Bae, Gi-Hyun;Huh, Hoon;Song, Jung-Han;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.112-119
    • /
    • 2006
  • This paper is concerned with the light-weight design of a center-pillar assembly for the high-speed side impact of vehicle using advanced high strength steels(AHSS). Steel industries continuously promote the ULSAB-AVC project for applying AHSS to structural parts as an alternative way to improve the crashworthiness and the fuel efficiency because it has the superior strength compared to the conventional steel. In order to simulate deformation behavior of the center-pillar assembly, a simplified center-pillar model is developed and parts of that are subdivided employing tailor-welded blanks(TWB) in order to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. Factorial design is carried out aiming at the application and configuration of AHSS to simplified side-impact analysis because it needs tremendous computing time to consider all combinations of parts. In optimization of the center-pillar, S-shaped deformation is targeted to guarantee the reduction of the injury level of a driver dummy in the crash test. The objective function is constructed so as to minimize the weight and lead to S-shape deformation mode. Optimization also includes the weight reduction comparing with the case using conventional steels. The result shows that the AHSS can be utilized effectively for minimization of the vehicle weight and induction of S-shaped deformation.

Vibration Characteristics and Drop Impacts of Bear Glass Bottles During Truck Transit (트럭 운송시 맥주용 유리병의 진동 및 낙하 특성)

  • Park, Su-Il;Park, In-Sik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.77-81
    • /
    • 2009
  • There has been an increasing demand on measurement of the vibration levels in commercial truck shipments, where all packaged products are exposed to some levels of random vibration and shock. In this study, bear glass bottles loaded at the front, middle, and rear positions of 11 tonne truck bed was shipped from Kwangju to Waegouan. Vertical direction vibration levels were analysed and matching laboratory random vibration test was performed using power spectral density (PSD) profiles derived from truck transit records. Also, the effects of drop hight on glass bottles were evaluated. As expected, the maximum vibration levels were recorded at the rear of truck bed. No breakage of bottles were observed during truck transit and laboratory random vibration testing set at 0.52 $G_{rms}$. In drop test, glass bottles were not damaged by bottom side impact, while short side drop impact caused about twice higher bottle breakage rate than that of long side drop impact at 30 cm and 40 cm drop hight.

  • PDF

Evaluation and Comparison of Weldabilities with Various Welding Processes on TMCP Steels (TMCP강의 용접 공정별 입열량에 따른 용접부 물성 평가 및 비교)

  • Choi, Chul Young;Ji, Chang Wook;Kim, Hyoung Chan;Nam, Dae-Geun;Kim, Joungdon;Kim, Soon Kook;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.6-14
    • /
    • 2014
  • This paper has an aim to evaluate microstructure and fracture toughness of TMCP steel weldment applied for off-shore wind tower with the focus on the effect of heat input on the weldment with various welding processes; FCAW(13kJ/cm and 30kJ/cm), SAW(62kJ/cm), and EGW(177kJ/cm). Based on experimental results developed from this study, it was found that the impact toughness of top side for TMCP steel weldments with heat input up to 62 kJ/cm satisfied the required minimum value except the EGW(177kJ/cm). The heat input and microstructure are the main factors of impact toughness. The heat input of 13kJ/cm on back side with low heat input increased the amount of grain boundary ferrite which has low impact toughness, and heat input of 177kJ/cm on top side is significant enough to produce the austenite grain growth. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by OM and EDS. As the heat input increased, the inclusions also grew and a nucleation site decreased. The size of nonmetallic inclusions and the crack width was nearly similar, therefore the inclusions were related with the crack propagation.

Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis (단순 측면충돌해석에 의한 센터필러의 최적설계)

  • Bae GiHyun;Song JungHan;Huh Hoon;Kim SeHo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.

Modeling and Analysis of Zero Voltage Switching PWM Half Bridge DC/DC Converter (영전압 스위칭 PWM 하프 브릿지 컨버터의 모델링 및 분석)

  • 강정일;정영석;노정욱;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.101-110
    • /
    • 1997
  • The circuit effects due to the transformer primary side series equivalent inductance in the Zero Voltage Switching Pulse Width Modulated Half Bridge DC/DC Converter and its impact on the effective duty are analyzed. The steady state equations and the small signal model of the converter are derived incorporating the effects of the complementary control and the utilization of transformer primary side series equivalent inductance. The open plant dynamics are analyzed on the basis of the model derived. The model predictions are confirmed by experimental measurements.

  • PDF

A study on abrasive wear characteristics of side plate of FRP ship (온도변화에 따른 유리섬유/폴리우레탄 복합재료의 충격파괴거동)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50$^{\circ}$ to 50$^{\circ}$. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.

Impact Monitoring in Composite Beam Using Stabilization Controlled FBG Sensor System (안정화된 FBG 센서를 이용한 복합적층보에서의 충격위치검출)

  • Bang Hyung-Joon;Park Sang-Oh;Hong Chang-Sun;Kim Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.103-106
    • /
    • 2004
  • Impact location monitoring is one of the major concerns of the smart health monitoring. For this application, multipoint ultrasonic sensors are to be employed. In this study, a multiplexed FBG sensor system with wide dynamic range was proposed and stabilization controlling system was also developed for the maintenance of maximum sensitivity of sensors. For the intensity demodulation system of FBG sensors, Fabry-Perot tunable filter(FP-TF) with 23.8nm FSR(free spectral range) was used, which behaves as two separate filters between $1530 \~ 1560$ nm range. Two FBG sensors were attached on the bottom side of the graphite/epoxy composite beam specimen, and low velocity impact tests were performed to detect the one-dimensional impact locations. Impact locations were calculated by the arrival time differences of the impact longitudinal waves acquired by the two FBGs. As a result, multiplexed in-line FBG sensors could detect the moment of impact precisely and found the impact locations with the average error of 1.32mm.

  • PDF

Effects on Vegetation Distribution of Odaesan National Park according to Climate and Topography of Baekdudaegan, Korea

  • Han, Bong-Ho;Choi, Jin-Woo;Yeum, Jung-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1111-1124
    • /
    • 2017
  • This study aimed to understand the distribution of vegetation in the eastern and western sides of the Baekdudaegan (ridge) dividing the Odaesan National Park, as influenced by its topography and climate. The actual vegetation, topography and climate for each side were used in the overlay analysis. The results of the analysis of actual vegetation showed a high distribution rate of Quercus mongolica forest on both the eastern and western sides. On the eastern side, the distribution rate of Pinus densiflora forest and P. densiflora-Q. variabilis forest was high, while the western side had a high distribution rate of deciduous broad-leaved tree forest and Abies hollophylla forest. A clear trend was identified for vegetation distribution with respect to elevation but not with respect to slope or aspect. The results of micro-landform analysis showed that the P. densiflora forests in the ridge and slope and the deciduous broad-leaved tree forest in the valley were respectively distributed with a high ratio. In terms of climate, the eastern side revealed an oceanic climate, with a relatively high average annual temperature, while the western side was characterized by relatively high average annual humidity and average annual precipitation. The distribution rate of P. densiflora forest was found to be high on the eastern side of the mountain range.

Collision Analysis of EMU Carbody against Overhead Line Structure (전차선 지지 구조물에 대한 전동차 차체의 충돌 해석연구)

  • Kim, Jin-Seok;Koo, Jeong-Seo;Kwon, Seok-Jin
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.11-17
    • /
    • 2006
  • In this paper, crashworthiness of EMU carbody against overhead line structure is numerically evaluated. The material of the EMU carbody is made of stainless steel(SS301L). The material of the overhead line structure(a portal-type) is structure steel (SS400). The EMU carbody is numerically analyzed under collision conditions such as upright side-on impact scenario and angled impact scenario to collide against overhead line structure(a portal-type) at 64.6 kph, respectively.

  • PDF

Axial Impact Collapse Analysis on Hat-shaped Members by FEM (FEM에 의한 단일모자형 단면부재의 축방향 충격압궤 해석)

  • Cha, Cheon-Seok;Gang, Jong-Yeop;Yang, In-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.129-136
    • /
    • 2000
  • In the frontal collision the spot welded hat-shaped section side member is the fundamental structure for automobiles and has a great amount of absorbing capacity. For this reason LS-DYNA3D has been used for analyzing impact collapse characteristics on hat shaped section member with respect to the valuables; thickness, width ratio and spot weld potch on impact load(7.19m/sec, 1034J). By comparing the results from simulation and the experimental results, the utilization of simulation has been certified.

  • PDF