• Title/Summary/Keyword: impact acceleration

Search Result 448, Processing Time 0.024 seconds

Application of Finite Element Method and Taguchi Method to Reduce Floor Impact Vibration in Apartment Buildings (공동주택의 바닥충격진동 저감을 위한 유한요소법 및 다구찌법의 활용)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.385-388
    • /
    • 2005
  • Finite element method and Taguchi method were used to reduce the floor impact vibration of the reinforced concrete slab in the apartment buildings. At first, experimental results show that sound peak components to influence the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab, and there is a high linear relation between floor impact vibration and sound. The tables of orthogonal arrays were used for finite element analysis with 5 factors related to slab shape parameters and its results were analyzed by statistical method. The most effective factor to reduce the floor impact vibration was the length of living/kitchen room and the floor impact vibration was predicted by 30% reduction in the acceleration peak by the optimal design values of the factors.

  • PDF

A Study on the Impact Load Quantification of the Jaw Crusher (쇄석기의 충격하중 정량화에 대한 연구)

  • Hong, Sung Ju;Yang, Hae Jeong
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • Jaw crusher is a device that breaks rock collected from mines or quarries to produce aggregates of the size desired by user. A representative method for measuring load is to measure them by attaching force sensors directly to the part where the load is generated. However, the direct method has many limitations such as high-impact loads generation in equipment or space constraints, sensor capacities and costs. Therefore, Transfer Path Analysis (TPA) was used to indirectly measure impact loads by attaching acceleration sensors. In this study, both direct and TPA methods were used to measure the impact load of Jaw crusher. This study finally quantifies the impact of the load generated by the Jaw crusher using direct method and TPA method, and comparing the impact load measured calculated the derive the error rate.

The Effect of Increased Running Speed on the Magnitude of Impact Shock Attenuation during Ground Contact (착지 시 달리기 속도 증가가 충격 쇼크 흡수에 미치는 영향)

  • Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.197-204
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the effect of increased running speed on the magnitude of impact shock attenuation in high frequency (9~20 Hz) at support phase on the treadmill running. Method: Twenty-four healthy male heel-toe runners participated in this study. Average age, height, mass, and preference running speed were 23.43±3.78 years, 176.44±3.38 cm, 71.05±9.04 kg, and 3.0±0.5 m/s, respectively. Three triaxial accelerometer (Noraxon, USA) were mounted to the tuberosity of tibia, PSIS (postero-superior iliac spine), and forehead to collect acceleration signals, respectively. Accelerations were collected for 20 strides at 1,000 Hz during treadmill (Bertec, USA) running at speed of 2.5, 3.0, 3.5, and 4.0 m/s. Power Spectrum Density (PSD) of three acceleration signals was calculated to use in transfer function describing the gain and attenuation of impact shock between the tibia and PSIS, and forehead. One-way ANOVA were performed to compare magnitude of shock attenuation between and within running speeds. The alpha level for all statistical tests was .05. Results: No significant differences resulted for magnitude of the vertical and resultant impact shock attenuation between the tibia and PSIS, and forehead between running speeds. However, significant differences within running speed were found in magnitude of the vertical shock attenuation between tibia and PSIS, tibia and forehead at speed of 2.5, 3.0 m/s, respectively. Conclusion: In conclusion, it might be conjectured that muscles covering the knee and ankle joints and shoe's heel pad need to strengthen to keep the lower extremities from injuries by impact shock at relatively fast running speed that faster than preferred running speed.

Finite element analysis of helmeted oblique impacts and head injury evaluation with a commercial road helmet

  • Fernandes, Fabio A.O.;de Sousa, R.J. Alves
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.661-679
    • /
    • 2013
  • In this work, the safety performance of a commercial motorcycle helmet already placed on the market is assessed. The assessed motorcycle helmet is currently homologated by several relevant motorcycle standards. Impacts including translational and rotational motions are accurately simulated through a finite element numerical framework. The developed model was validated against experimental results: firstly, a validation concerning the constitutive model for the expanded polystyrene, the material responsible for energy absorption during impact; secondly, a validation regarding the acceleration measured at the headform's centre of gravity during the linear impacts defined in the ECE R22.05 standard. Both were successfully validated. After model validation, an oblique impact was simulated and the results were compared against head injury thresholds in order to predict the resultant head injuries. From this comparison, it was concluded that brain injuries such as concussion and diffuse axonal injury may occur even with a helmet certified by the majority of the motorcycle helmet standards. Unfortunately, these standards currently do not contemplate rotational components of acceleration. Conclusion points out to a strong recommendation on the necessity of including rotational motion in forthcoming motorcycle helmet standards and improving the current test procedures and head injury criteria used by the standards, to improve the safety between the motorcyclists.

Dynamic Response Measurement of the Head Arm Assembly of a Hard Disk Drive by Numerical Analysis and Experiments

  • Parlapalli, Madhusudhana R;Bin, Gu;Dongwei, Shu;Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.22-25
    • /
    • 2008
  • The dynamic response of the head arm assembly (HAA) of a hard disk drive to an impact load was obtained from a 3D non-linear finite element model using ANSYS/LS-DYNA and from experiments using a modified levitation mass method (LMM). In the finite element model, the impact load was created by modeling the mass as a rigid body and making it collide with the HAA. The velocity, displacement, acceleration, and inertial force of the mass were then obtained from the time history data of the finite element analysis. In the LMM, a mass that was levitated with an aerostatic linear bearing, and hence encountered negligible friction, was made to collide with the actuator arm, resulting in a dynamic bending test for the arm. During the collision, the Doppler frequency shift of the laser beam reflected from the mass was accurately measured with an optical interferometer. The velocity, displacement, acceleration, and inertial force of the mass were accurately calculated from the measured time-varying Doppler frequency shift. A good correlation between the experimental data and FEA results was observed. The FEA was also used to investigate the dynamic response of the HAA to impact by different masses.

Seismic responses of structure isolated by FPB subject to pounding between the sliding interfaces considering soil-structure interaction

  • Yingna Li;Jingcai Zhang
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.463-475
    • /
    • 2024
  • The study aims to investigate the pounding that occurs between the isolator's ring and slider of isolated structures resulting from excessive seismic excitation, while considering soil-structure interaction. The dynamic responses and poundings of structures subjected a series seismic records were comparatively analyzed for three different soil types and fixed-base structures. A series of parametric studies were conducted to thoroughly discuss the effects of the impact displacement ratio, the FPB friction coefficient ratio, and the radius ratio on the structural dynamic response when considering impact and SSI. It was found that the pounding is extremely brief, with an exceptionally large pounding force generated by impact, resulting in significant acceleration pulse. The acceleration and inter-story shear force of the structure experiencing pounding were greater than those without considering pounding. Sudden changes in the inter-story shear force between the first and second floors of the structure were also observed. The dynamic response of structures in soft ground was significantly lower than that of structures in other ground conditions under the same conditions, regardless of the earthquake wave exciting the structure. When the structure is influenced by pulse-type earthquake records, its dynamic response exhibits a trend of first intensifying and then weakening as the equivalent radius ratio and friction coefficient ratio increase. However, it increases with an increase in the pounding displacement ratio, equivalent radius ratio, friction coefficient ratio, and displacement ratio when the structures are subjected to non-pulse-type seismic record.

Gas Cluster ion Source for Etching and Smoothing of Solid Surfaces (고체 표면 식각 및 평탄화를 위한 가스 클러스터 이온원 개발)

  • 송재훈;최덕균;최원국
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.232-235
    • /
    • 2002
  • An 150 kV gas cluster ion accelerator was fabricated and assessed. The change of surface morphology and surface roughness were examined by an atom force microscope (AFM) after irradiation of $CO_2$ gas clusters on Si (100) surfaces at the acceleration voltages of 50 kV. The density of hillocks induced by cluster ion impact was gradually increased with the dosage up to 5$\times$10$^{11}$ ions/$\textrm{cm}^2$. At the boundary of the ion dosage of 10$^{12}$ ions/$\textrm{cm}^2$, the density of the induced hillocks was decreased and RMS (root mean square) surface roughness was not deteriorated further. At the dosage of 5x10$^{13}$ ions/$\textrm{cm}^2$, the induced hillocks completely disappeared and the surface became very flat. In addition, the irradiated region was sputtered. $CO_2$ cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surface and thus to attain highly smooth surfaces. $CO_2$ monomer ions are also bombarded on the ITO surface at the same acceleration voltage to compare sputtering phenomena. From the AFM results, the irradiation of monomer ions make the hillocks sharper and the surfaces rougher On the other hand, the irradiation of $CO_2$ cluster ions reduces the hight of hillocks and planarize the ITO surfaces. From the experiment of isolated cluster ion impact on the Si surfaces, the induced hillocks m high had the surfaces embossed at the lower ion dosages. The surface roughness was slightly increased with the hillock density and the ion dosage. At higher than a critical ion dosage, the induced hillocks were sputtered and the sputtered particles migrated in order to fill valleys among the hillocks. After prolonged irradiation of cluster ions, the irradiated region was very flat and etched.

  • PDF

Low-velocity Impact Damage of a Thick Pressure vessel (복합재료 만든 두꺼운 압력용기의 저속충격에 관한 연구)

  • 김형원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.92-97
    • /
    • 2000
  • Low-velocity impact damage of a thick pressure vessel by composite materials was studied using the modified Herzian contact radius theory. Impactors of various masses and various tup shapes were dropped freely in the range of 20m to 200mm height. With acceleration gage and strain gage installed on the impactor, impact force and acceleration and Contact radius were measured. After a test, the samples were radiographed to scan the state of damage. Compared with hemispherical tup of 12.7mm diameter, the contact radius of hemispherical tup of 25.4mm diameter was bigger. And the experimental data and the theoretical data was different due to the mechanical properties difference. The acceleration value was changed linearly according to the height.

  • PDF

Non-linear Maneuvering Target Tracking Method Using PIP (PIP 개념을 이용한 비선형 기동 표적 추적 기법)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.136-142
    • /
    • 2007
  • This paper proposes a new approach on nonlinear maneuvering target tracking. In this paper, proposed algorithm is the Kalman filter based on the adaptive interactive multiple model using the concept of predicted impact point and utilize modified Kalman filter regarding the error between measurement position and predicted impact point. The unknown target acceleration is regarded as an additional process noise to the target model, and each sub-model is characterized in accordance with the valiance of the overall process noise which is obtained on the basis of each acceleration interval. To compensate the decreasing performance of Kalman filter in nonlinear maneuver, we construct optional algorithm to utilize proposed method or Kalman filter selectively. To effectively estimate the acceleration during the target maneuvering, the rapid increase of the noise scale is recognized as the acceleration to be used in maneuvering target's movement equation. And a few examples are presented to show suggested algorithm's executional potential.

3-Dimensional Nonlinear Analysis of Low Velocity Impact On Composite Plates (복합재료 평판의 비선형 3차원 저속 충격 해석)

  • 김승조;지국현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.38-42
    • /
    • 2000
  • In this study, the low velocity impact behavior of the composite laminates has been described by using 3 dimensional nonlinear finite elements. To describe the geometric nonlinearity due to large deformation, the dynamic contact problem is formulated using the exterior penalty finite element method on the base of Total Lagrangian formulation. The incremental decomposition is introduced, and the converged solution is attained by Newton-Raphson Method. The Newmark's constant-acceleration time integration algorithm is used. To make verification of the finite element program developed in this study, the solution of the nonlinear static problem with occurrence of large deformation is compared with ABAQUS, and the solution of the static contact problem with indentation is compared with the Hertz solution. And, the solution of low velocity impact problem for isotropic material is verificated by comparison with that of LS-DYNA3D. Finally the contact force of impact response from the nonlinear analysis are compared with those from the linear analysis.

  • PDF