• Title/Summary/Keyword: immunomodulatory regulator

Search Result 7, Processing Time 0.021 seconds

Host-Directed Therapeutics as a Novel Approach for Tuberculosis Treatment

  • Kim, Ye-Ram;Yang, Chul-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1549-1558
    • /
    • 2017
  • Despite significant efforts to improve the treatment of tuberculosis (TB), it remains a prevalent infectious disease worldwide owing to the limitations of current TB therapeutic regimens. Recent work on novel TB treatment strategies has suggested that directly targeting host factors may be beneficial for TB treatment. Such strategies, termed host-directed therapeutics (HDTs), focus on host-pathogen interactions. HDTs may be more effective than the currently approved TB drugs, which are limited by the long durations of treatment needed and the emergence of drug-resistant strains. Targets of HDTs include host factors such as cytokines, immune checkpoints, immune cell functions, and essential enzyme activities. This review article discusses examples of potentially promising HDTs and introduces novel approaches for their development.

Latest Comprehensive Knowledge of the Crosstalk between TLR Signaling and Mycobacteria and the Antigens Driving the Process

  • Kim, Jae-Sung;Kim, Ye-Ram;Yang, Chul-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1506-1521
    • /
    • 2019
  • Tuberculosis, which is caused by Mycobacterium tuberculosis (Mtb), is among the most pressing worldwide problems. Mtb uniquely interacts with innate immune cells through various pattern recognition receptors. These interactions initiate several inflammatory pathways that play essential roles in controlling Mtb pathogenesis. Although the TLR signaling pathways have essential roles in numerous host's immune defense responses, the role of TLR signaling in the response to Mtb infection is still unclear. This review presents discussions on host-Mtb interactions in terms of Mtb-mediated TLR signaling. In addition, we highlight recent discoveries pertaining to these pathways that may help in new immunotherapeutic opportunities.

Hepatitis C Virus Nonstructural Protein 5A Interacts with Immunomodulatory Kinase IKKε to Negatively Regulate Innate Antiviral Immunity

  • Kang, Sang-Min;Park, Ji-Young;Han, Hee-Jeong;Song, Byeong-Min;Tark, Dongseob;Choi, Byeong-Sun;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.702-717
    • /
    • 2022
  • Hepatitis C virus (HCV) infection can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV employs diverse strategies to evade host antiviral innate immune responses to mediate a persistent infection. In the present study, we show that nonstructural protein 5A (NS5A) interacts with an NF-κB inhibitor immunomodulatory kinase, IKKε, and subsequently downregulates beta interferon (IFN-β) promoter activity. We further demonstrate that NS5A inhibits DDX3-mediated IKKε and interferon regulatory factor 3 (IRF3) phosphorylation. We also note that hyperphosphorylation of NS5A mediates protein interplay between NS5A and IKKε, thereby contributing to NS5A mediated modulation of IFN-β signaling. Lastly, NS5A inhibits IKKε-dependent p65 phosphorylation and NF-κB activation. Based on these findings, we propose NS5A as a novel regulator of IFN signaling events, specifically by inhibiting IKKε downstream signaling cascades through its interaction with IKKε. Taken together, these data suggest an additional mechanistic means by which HCV modulates host antiviral innate immune responses to promote persistent viral infection.

A77 1726 Inhibit NO-induced Apoptosis via PI-3K/AKT Signaling Pathway in Rabbit Articular Chondrocyte

  • Choi, In-Kyou;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • Leflunomide is an immunomodulatory agent used for the treatment of rheumatoid arthritis (RA). Leflunomide known as a regulator of iNOS synthesis which largely decreases NO production in diverse cell type. However, the effect of leflunomide on chondrocyte is still poorly understood. In our previous studies, we have shown that direct production of Nitric oxide (NO) by treating chondrocytes with NO donor, sodium nitroprusside (SNP), causes apoptosis via p38 mitogen-activated protein kinase in association with elevation of p53 protein level, caspase-3 activation. In this study, we characterized the molecular mechanism by which A77 1726 inhibit apoptosis. We found that A77 1726 inhibit NO-induced apoptosis as determined by MTT (Thiazolyl Blue Tetrazolium Bromide) assay and DNA fragmentation. The inhibition of apoptosis by A77 1726 was accompanied by increased PI-3 kinase and AKT activities. So, inhibition of phosphatidylinositol (PI)-3kinase with LY294002 rescued apoptosis. Triciribine, the specific inhibitor of AKT, also abolished anti-apoptotic effect. Our results indicate that A77 1726, the active metabolite of leflunomide, mediates NO-induced apoptosis in chondrocytes by modulating up-regulation of PI-3 kinase and AKT.

  • PDF

Regulatory Role of Zinc in Immune Cell Signaling

  • Kim, Bonah;Lee, Won-Woo
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.335-341
    • /
    • 2021
  • Zinc is an essential micronutrient with crucial roles in multiple facets of biological processes. Dysregulated zinc homeostasis impairs overall immune function and resultantly increases susceptibility to infection. Clinically, zinc supplementation is practiced for treatment of several infectious diseases, such as diarrhea and malaria. Recent focus on zinc as a beneficial element for immune system support has resulted in investigation of the immunomodulatory roles of zinc in a variety of immune cells. Besides its classical role as a cofactor that regulates the structural function of thousands of proteins, accumulating evidence suggests that zinc also acts, in a manner similar to calcium, as an ionic regulator of immune responses via participation as an intracellular messenger in signaling pathways. In this review, we focus on the role of zinc as a signaling molecule in major pathways such as those downstream of Toll-like receptors-, T cell receptor-, and cytokine-mediated signal transduction that regulate the activity and function of monocytes/macrophages and T cells, principal players in the innate and adaptive immune systems.

EFFECTS OF MACROPHAGE INFLAMMATORY $PROTEIN-1{\alpha}$ON THE T CELL PROLIFERATION AND THE EXPRESSION OF CD4 AND CD8 (Macrophage Inflammatory Protein $1{\alpha}$가 T세포성장 및 CD4, CD8 발현에 미치는 영향)

  • Choi, Jong-Sun;Kim, Oh-Whan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.1
    • /
    • pp.153-163
    • /
    • 1996
  • Macrophage inflammatory protein $(MIP)-1{\alpha}$ is a cytokine which produces wide range of bioactivities such as proinflammatory, immunomodulatory, and hematopoietic modulatory actions. To determine whether $MIP-1{\alpha}$ acts as a negative regulator on the functions of lymphocyte, $[^3H]$-thymidine incorporation test and flow cytometric analysis were performed by using human tonsil T cell, human peripheral blood T cell, and murine cytolytic T lymphocyte (CTL) line CTLL-2, The results were as follow. 1. When human tonsil T lymphocytes were stimulated with anti-CD3 monoclonal antibody (mAb), rate of T cell proliferation was about four times increased. 200ng/ml of $MIP-1{\alpha}$ inhibited anti-CD3 mAb-mediated T cell growth as much as 60% (P<0.05). 2. The suppression of human peripheral T cell proliferation produced by $MIP-1{\alpha}$ was dramatic, but variable among T cells derived from different individuals $(40%{\sim}90%)$. 3. $MIP-1{\alpha}$inhibited the proliferation of murine CTL line CTLL-2 as much as 75%(P<0.001). 4. When the $MIP-1{\alpha}$ was added to human peripheral T cell, cell proporation of $CD4^+$ helper T cell and $CD8^+$ CTL were not noticeably affected. The expression level of CD4, not of Cd8, however, was down regulated by $MIP-1{\alpha}$ treatment $(27%{\sim}82%)$.

  • PDF

Evaluation of Immune Enhancing Activity of Luthione, a Reduced Glutathione, in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 환원형 glutathione인 luthione의 면역 증강 활성 평가)

  • Seon Yeong Ji;Da Hye Kwon;Hye Jin Hwang;Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.397-405
    • /
    • 2023
  • Although glutathione (GSH) has been shown to play an important role in the prevention of oxidative damage as an antioxidant, studies on immune regulation by it have not been properly conducted. In this study, we investigated whether luthione®, a reduced GSH, has an immune enhancing effect in murine macrophage RAW 264.7 cells. The results of flow cytometry and immunofluorescence experiments indicated that luthione increased phagocytic activity, a representative function of macrophages, compared to the control cells. According to the results of the cytokine array, the expression of interleukin (IL)-5, IL-1β, and IL-27 was significantly increased in the luthione-treated cells. Luthione also enhanced the production of tumor necrosis factor-α and IL-1β through increased expression of their proteins, and increased release of the immune mediators such as nitric oxide (NO) and prostaglandin E2 was associated with increased expression of inducible NO synthase and cyclooxygenase-2. In addition, the expression of cluster of differentiation 86, an M1 macrophage marker, was dramatically enhanced in RAW 264.7 cells treated with luthione. Furthermore, as a result of heat map analysis, we found that cytokine signaling 1/3-mediated signal transducer and activator of transcription/Janus tyrosine kinase signaling pathway was involved in the immunomodulatory effect by luthione. In conclusion, our data suggested that luthione could act as a molecular regulator in M1 macrophage polarization and enhance immune capacity by promoting macrophage phagocytic function.