Browse > Article
http://dx.doi.org/10.4014/jmb.1705.05032

Host-Directed Therapeutics as a Novel Approach for Tuberculosis Treatment  

Kim, Ye-Ram (Department of Molecular and Life Science, Hanyang University)
Yang, Chul-Su (Department of Molecular and Life Science, Hanyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.9, 2017 , pp. 1549-1558 More about this Journal
Abstract
Despite significant efforts to improve the treatment of tuberculosis (TB), it remains a prevalent infectious disease worldwide owing to the limitations of current TB therapeutic regimens. Recent work on novel TB treatment strategies has suggested that directly targeting host factors may be beneficial for TB treatment. Such strategies, termed host-directed therapeutics (HDTs), focus on host-pathogen interactions. HDTs may be more effective than the currently approved TB drugs, which are limited by the long durations of treatment needed and the emergence of drug-resistant strains. Targets of HDTs include host factors such as cytokines, immune checkpoints, immune cell functions, and essential enzyme activities. This review article discusses examples of potentially promising HDTs and introduces novel approaches for their development.
Keywords
Tuberculosis; Mycobacterium tuberculosis; multidrug resistance; host-directed therapeutics; immunomodulatory regulator;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Arbex MA, Varella Mde C, Siqueira HR, Mello FA. 2010. Antituberculosis drugs: drug interactions, adverse effects, and use in special situations. Part 2: second line drugs. J. Bras. Pneumol. 36: 641-656.   DOI
2 Aubry A, Pan XS, Fisher LM, Jarlier V, Cambau E. 2004. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob. Agents Chemother. 48: 1281-1288.   DOI
3 Wade MM, Zhang Y. 2004. Mechanisms of drug resistance in Mycobacterium tuberculosis. Front. Biosci. 9: 975-994.   DOI
4 Das KM, Eastwood MA, McManus JP, Sircus W. 1973. Adverse reactions during salicylazosulfapyridine therapy and the relation with drug metabolism and acetylator phenotype. N. Engl. J. Med. 289: 491-495.   DOI
5 Caceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V, Barletta RG. 1997. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J. Bacteriol. 179: 5046-5055.   DOI
6 World health Organization. 2011. Guidelin es for the Programmatic Management of Drug-resistant Tuberculosis - 2011 Update. WHO, Geneva, Switzerland.
7 Johnson BJ, Ress SR, Willcox P, Pati BP, Lorgat F, Stead P, et al. 1995. Clinical and immune responses of tuberculosis patients treated with low-dose IL-2 and multidrug therapy. Cytokines Mol. Ther. 1: 185-196.
8 Johnson BJ, Bekker LG, Rickman R, Brown S, Lesser M, Ress S, et al. 1997. rhuIL-2 adjunctive therapy in multidrug resistant tuberculosis: a comparison of two treatment regimens and placebo. Tuber. Lung Dis. 78: 195-203.   DOI
9 Wallis RS, van Vuuren C, Potgieter S. 2009. Adalimumab treatment of life-threatening tuberculosis. Clin. Infect. Dis. 48: 1429-1432.   DOI
10 Baulard AR, Betts JC, Engohang-Ndong J, Quan S, McAdam RA, Brennan PJ, et al. 2000. Activation of the pro-drug ethionamide is regulated in mycobacteria. J. Biol. Chem. 275: 28326-28331.
11 Schnippel K, Rosen S, Shearer K, Martinson N, Long L, Sanne I, et al. 2013. Costs of inpatient treatment for multidrug- resistant tuberculosis in South Africa. Trop. Med. Int. Health 18: 109-116.   DOI
12 Okada M, Kita Y, Kanamaru N, Hashimoto S, Uchiyama Y, Mihara M, et al. 2011. Anti-IL-6 receptor antibody causes less promotion of tuberculosis infection than anti-TNF-alpha antibody in mice. Clin. Dev. Immunol. 2011: 404929.
13 Datta M, Via LE, Kamoun WS, Liu C, Chen W, Seano G, et al. 2015. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc. Natl. Acad. Sci. USA 112: 1827-1832.   DOI
14 Zumla A, Rao M, Wallis RS, Kaufmann SH, Rustomjee R, Mwaba P, et al. 2016. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect. Dis. 16: e47-e63.   DOI
15 Zaman K. 2010. Tuberculosis: a global health problem. J. Health Popul. Nutr. 28: 111-113.
16 World Health Organization. 2016. Global Tuberculosis Report 2016. WHO, Geneva, Switzerland.
17 Arbex MA, Varella Mde C, Siqueira HR, Mello FA. 2010. Antituberculosis drugs: drug interactions, adverse effects, and use in special situations. Part 1: first-line drugs. J. Bras. Pneumol. 36: 626-640.   DOI
18 Zumla A, Rao M, Parida SK, Keshavjee S, Cassell G, Wallis R, et al. 2015. Inflammation and tuberculosis: host-directed therapies. J. Intern. Med. 277: 373-387.   DOI
19 Hawn TR, Matheson AI, Maley SN, Vandal O. 2013. Hostdirected therapeutics for tuberculosis: can we harness the host? Microbiol. Mol. Biol. Rev. 77: 608-627.   DOI
20 Carette X, Blondiaux N, Willery E, Hoos S, Lecat-Guillet N, Lens Z, et al. 2012. Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands. Nucleic Acids Res. 40: 3018-3030.   DOI
21 Bouza E, Munoz P. 2001. Linezolid: pharmacokinetic characteristics and clinical studies. Clin. Microbiol. Infect. 7 Suppl 4: 75-82.
22 Tato M, de la Pedrosa EG, Canton R, Gomez-Garcia I, Fortun J, Martin-Davila P, et al. 2006. In vitro activity of linezolid against Mycobacterium tuberculosis complex, including multidrug-resistant Mycobacterium bovis isolates. Int. J. Antimicrob. Agents 28: 75-78.   DOI
23 Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, et al. 2012. Linezolid for treatment of chronic extensively drugresistant tuberculosis. N. Engl. J. Med. 367: 1508-1518.   DOI
24 Watkins RR, Lemonovich TL, File TM Jr. 2012. An evidencebased review of linezolid for the treatment of methicillinresistant Staphylococcus aureus (MRSA): place in therapy. Core Evid. 7: 131-143.
25 Zumla A, Rao M, Dodoo E, Maeurer M. 2016. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med. 14: 89.   DOI
26 Bento CF, Empadinhas N, Mendes V. 2015. Autophagy in the fight against tuberculosis. DNA Cell Biol. 34: 228-242.   DOI
27 Hur KY, Lee MS. 2015. New mechanisms of metformin action: focusing on mitochondria and the gut. J. Diabetes Investig. 6: 600-609.   DOI
28 Tiwari B, Soory A, Raghunand TR. 2014. An immunomodulatory role for the Mycobacterium tuberculosis region of difference 1 locus proteins PE35 (Rv3872) and PPE68 (Rv3873). FEBS J. 281: 1556-1570.   DOI
29 Podder B, Jang WS, Nam KW, Lee BE, Song HY. 2015. Ursolic acid activates intracellular killing effect of macrophages during Mycobacterium tuberculosis infection. J. Microbiol. Biotechnol. 25: 738-744.   DOI
30 Flores-Villalva S, Rogriguez-Hernandez E, Rubio-Venegas Y, Canto-Alarcon JG, Milian-Suazo F. 2015. What can proteomics tell us about tuberculosis? J. Microbiol. Biotechnol. 25: 1181-1194.   DOI
31 Yang CS, Yuk JM, Lee YH, Jo EK. 2015. Toxoplasma gondii GRA7-induced TRAF6 activation contributes to host protective immunity. Infect. Immun. 84: 339-350.
32 Koh HJ, Kim YR, Kim JS, Yun JS, Jang K, Yang CS. 2017. Toxoplasma gondii GRA7-targeted ASC and PLD1 promote antibacterial host defense via PKCalpha. PLoS Pathog. 13: e1006126.   DOI
33 Rossi JF, Lu ZY, Jourdan M, Klein B. 2015. Interleukin-6 as a therapeutic target. Clin. Cancer Res. 21: 1248-1257.   DOI
34 Timmins GS, Deretic V. 2006. Mechanisms of action of isoniazid. Mol. Microbiol. 62: 1220-1227.   DOI
35 Zumla A, Maeurer M, Host-Directed Therapies Network, Chakaya J, Hoelscher M, Ntoumi F, et al. 2015. Towards host-directed therapies for tuberculosis. Nat. Rev. Drug Discov. 14: 511-512.   DOI
36 World health Organization, Initiative ST. 2010. Treatment of Tuberculosis: Guidelines. WHO, Geneva, Switzerland.
37 D'Ambrosio L, Centis R, Sotgiu G, Pontali E, Spanevello A, Migliori GB. 2015. New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Res. 1: 00010-2015.
38 Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry CE 3rd, et al. 2011. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333: 1630-1632.   DOI
39 Kim JJ, Lee HM, Shin DM, Kim W, Yuk JM, Jin HS, et al. 2012. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11: 457-468.   DOI
40 Zullo AJ, Lee S. 2012. Old antibiotics target TB with a new trick. Cell Host Microbe 11: 419-420.   DOI
41 Kolyva AS, Karakousis PC. 2012. Old and New TB Drugs: Mechanisms of Action and Resistance. INTECH Open Access Publisher, Croatia.
42 Zumla A, Nahid P, Cole ST. 2013. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12: 388-404.   DOI
43 Bruns H, Stegelmann F, Fabri M, Dohner K, van Zandbergen G, Wagner M, et al. 2012. Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. J. Immunol. 189: 4069-4078.   DOI
44 Yang CS, Kim JJ, Lee HM, Jin HS, Lee SH, Park JH, et al. 2014. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy 10: 785-802.   DOI
45 Singhal A, Jie L, Kumar P, Hong GS, Leow MK, Paleja B, et al. 2014. Metformin as adjunct antituberculosis therapy. Sci. Transl. Med. 6: 263ra159.   DOI
46 Napier RJ, Rafi W, Cheruvu M, Powell KR, Zaunbrecher MA, Bornmann W, et al. 2011. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10: 475-485.   DOI
47 Vilaplana C, Marzo E, Tapia G, Diaz J, Garcia V, Cardona PJ. 2013. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J. Infect. Dis. 208: 199-202.   DOI
48 Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, et al. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511: 99-103.   DOI
49 Chun RF, Adams JS, Hewison M. 2011. Immunomodulation by vitamin D: implications for TB. Expert Rev. Clin. Pharmacol. 4: 583-591.   DOI
50 Pedral-Sampaio DB, Netto EM, Brites C, Bandeira AC, Guerra C, Barberin MG, et al. 2003. Use of Rhu-GM-CSF in pulmonary tuberculosis patients: results of a randomized clinical trial. Braz. J. Infect. Dis. 7: 245-252.
51 Wallis RS. 2005. Reconsidering adjuvant immunotherapy for tuberculosis. Clin. Infect. Dis. 41: 201-208.   DOI
52 Phillips BL, Mehra S, Ahsan MH, Selman M, Khader SA, Kaushal D. 2015. LAG3 expression in active Mycobacterium tuberculosis infections. Am. J. Pathol. 185: 820-833.   DOI
53 Postow MA, Callahan MK, Wolchok JD. 2015. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33: 1974-1982.   DOI
54 Parida SK, Madansein R, Singh N, Padayatchi N, Master I, Naidu K, et al. 2015. Cellular therapy in tuberculosis. Int. J. Infect. Dis. 32: 32-38.   DOI
55 Rich M. 2003. The PIH Guide to the Medical Management of Multidrug-resistant Tuberculosis. International Ed., Partners in Health, Boston, MA.
56 Rattan A, Kalia A, Ahmad N. 1998. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg. Infect. Dis. 4: 195.   DOI
57 Lange C, Abubakar I, Alffenaar JW, Bothamley G, Caminero JA, Carvalho AC, et al. 2014. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. Eur. Respir. J. 44: 23-63.   DOI
58 Mily A, Rekha RS, Kamal SM, Arifuzzaman AS, Rahim Z, Khan L, et al. 2015. Significant effects of oral phenylbutyrate and vitamin D3 adjunctive therapy in pulmonary tuberculosis: a randomized controlled trial. PLoS One 10: e0138340.   DOI
59 Sharma D, Cukras AR, Rogers EJ, Southworth DR, Green R. 2007. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. J. Mol. Biol. 374: 1065-1076.   DOI
60 Crofton J, Mitchison D. 1948. Streptomycin resistance in pulmonary tuberculosis. Br. Med. J. 2: 1009.   DOI
61 Salian S, Matt T, Akbergenov R, Harish S, Meyer M, Duscha S, et al. 2012. Structure-activity relationships among the kanamycin aminoglycosides: role of ring I hydroxyl and amino groups. Antimicrob. Agents Chemother. 56: 6104-6108.   DOI
62 Ottenhoff TH, Verreck FA, Hoeve MA, van de Vosse E. 2005. Control of human host immunity to mycobacteria. Tuberculosis 85: 53-64.   DOI
63 Singh A, Mohan A, Dey AB, Mitra DK. 2013. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon gamma-producing T cells from apoptosis in patients with pulmonary tuberculosis. J. Infect. Dis. 208: 603-615.   DOI
64 Grosso JF, Jure-Kunkel MN. 2013. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 13: 5.
65 Rivero-Lezcano OM. 2008. Cytokines as immunomodulators in tuberculosis therapy. Recent Pat. Antiinfect. Drug Discov. 3: 168-176.   DOI
66 Denis M, Ghadirian E. 1990. Granulocyte-macrophage colonystimulating factor restricts growth of tubercle bacilli in human macrophages. Immunol. Lett. 24: 203-206.   DOI
67 Chroneos ZC, Jagannath C. 2012. Immunoregulatory Role of GM-CSF in Pulmonary Tuberculosis. INTECH Open Access Publisher, Croatia.
68 Nelson BH. 2004. IL-2, regulatory T cells, and tolerance. J. Immunol. 172: 3983-3988.   DOI