• 제목/요약/키워드: immune-cells

검색결과 3,401건 처리시간 0.034초

IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance

  • Dong Hyun Kim;Won-Woo Lee
    • IMMUNE NETWORK
    • /
    • 제24권3호
    • /
    • pp.21.1-21.16
    • /
    • 2024
  • IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1β is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.

용육조위탕(龍肉調胃湯) 증류액이 노화 흰쥐 비장 세포의 면역활성에 미치는 영향 (The Effect of Yongyukjowitang Distillate on the Immune Activity of Spleen Cells of Aged Rats)

  • 이진욱;장문희;최재송;안택원
    • 사상체질의학회지
    • /
    • 제25권3호
    • /
    • pp.218-232
    • /
    • 2013
  • Objectives The purpose of this study was to investigate the effect of Yongyukjowitang(YJT) distillate on the immune activity of spleen cells of aged SD rats. Methods Spleen cells from 10w, 52w, 72w old rats were stimulated with Concanavalin A(Con A) and treated with Vitamin C(Vit.C) or Yongyukjowitang distillate(YJT). After 24 hours, levels of IL-2, IL-4, IL-10, IFN-${\gamma}$ were measured using ELISA in spleen cells. Results and Conclusions 1. The concentration of IL-2, IL-4 in spleen cells of 52 weeks old SD rats(YJT group) significantly decreased in comparison with ConA group. 2. The concentration of IFN-${\gamma}$ in spleen cells of 72 weeks old SD rats significantly increased in comparison with 10 weeks old SD rats(NT group), but decreased in comparison with 10 weeks old SD rats(YJT group). These results suggest that Yongyukjowitang distillate has an effect on the immune activity of spleen cells of aged SD rats.

용각산의 면역조절 및 백혈병세포의 아폽토시스에 미치는 효과 (Effect of Yonggak-san on the Immuno-regulatory and Apoptosis of Leukemia cells)

  • 오찬호;권진;이광규
    • 동의생리병리학회지
    • /
    • 제16권5호
    • /
    • pp.932-937
    • /
    • 2002
  • The purpose of this research was to investigate the effect of Yonggak-san (YGS) on the immune reaction and apoptosis of leukemia cells. Administration of YGS(500 mg/kg) enhanced proliferation of splenocytes, thymocytes and mesenteric lymph node cells, and also YGS accelerated subpopulation of splenic Band T, thymic T and mesenteric lymph node-T lymphocytes, especially significantly increased CD4+-TH cells in BALB/c mice. YGS accelerated phagocytic activity and production of nitric oxide in peritoneal macrophages. YGS induced apoptosis of transplanted-L1210 cells in vivo, increased apoptotic cell death of cultured-L1210 and/or Molt4 human leukemia cells, decreased of mitochondrial transmembrane potential of both cells in vitro. These results suggest that YGS have an immune-regulatory effect and anti-cancer property.

선천면역 및 적응면역에서 비만세포의 기능 (The Role of Mast Cells in Innate and Adaptive Immunity.)

  • 김영희
    • 생명과학회지
    • /
    • 제18권6호
    • /
    • pp.891-896
    • /
    • 2008
  • The function of mast cells as effector cells in allergy has been extensively studied. Mast cells activated through high affinity IgE-receptor ($Fc{\varepsilon}RI$) release diverse mediators, and lead to smooth muscle constriction, vasodilation, increase of vascular permeability, leukocyte recruitment and activation, mucus secretion, and tissue proliferation and remodeling. However, various other immunological and non-immunological signals can lead to the activation of mast cells. In resent years, mast cells have been identified to be involved in a complex range of immune functions. Mast cells can be important as key players in the regulation of innate as well as adapted immune responses, and may influence the development of allergy, autoimmune disorder and peripheral tolerance. This review summarizes the recent advances in the understanding of effector functions of mast cells in immune responses.

Niclosamide Enhances NK cell Proliferation and Anti-Tumor Activity for Cancer Immunotherapy

  • Min Hwa Shin
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.382-385
    • /
    • 2023
  • NK (Natural killer) cells are innate immune cells and play important roles as the first immune cells to act when cancer occurs. In many cancer patients, NK cells can be seen to be inactivated, suggesting that NK cells are important in cancer treatment. In order to overcome the disadvantages of NK cells in cancer treatment, it is critical to develop strategies that enhance the proliferation and cytolytic function of NK cells. We applied niclosamide to measure the degree of NK cell activation, and obtained unexpected results of increased NK cell numbers and anti-tumor activity. Although further investigation is required to uncover the detailed mechanisms, our results suggest that Niclosamide is a promising candidate to increase the efficacy of cancer immunotherapy using NK cells.

Effects of Acanthopanax sessiliflorus on Immune Cells such as Thymocytes, Splenocytes and Macrophages in Mice

  • Kim, Hyung-Woo;Kim, Gye-Yeop;Jeon, Byung-Gwan;Choi, Jeong-Sik;Jeong, Hyun-Woo;Cho, Su-In
    • 대한한방내과학회지
    • /
    • 제28권2호
    • /
    • pp.377-384
    • /
    • 2007
  • Objective : Immune potentiation including activation of T cells, B cells, macrophages, and dendritic cells is known to play a key role in prevention and treatment of patients with cancer. In this study, we investigated the effects of Acanthopanax sessiliflorus (AR) on the immune system, especially on thymocytes, splenocytes, and macrophages. Methods : We investigated the effects of AR on proliferation of splenocytes in normal mice, and the effects on proliferation of splenocytes and thymocytes in tumor-bearing mice. In addition, the effect of AR on NO production using macrophages was investigated. Results : Treatment with AR accelerated proliferation of splenocytes in vitro. AR also accelerated thymocyte proliferation, but did not affect splenocytes proliferation in normal mice. In contrast, AR accelerated proliferation of splenocytes and thymocytes significantly in tumor bearing mice. In addition, NO production level from macrophages was elevated by treatment with AR. Conclusion : These results demonstrate that AR has anti-cancer activities and related mechanisms are involved in immune potentiation such as acceleration of immune cell proliferation and elevation of NO production level in macrophages. In addition, we also demonstrate the possibilities of AR as complementary and alternative medicine to standard anti-cancer drugs.

  • PDF

Regulatory Role of Zinc in Immune Cell Signaling

  • Kim, Bonah;Lee, Won-Woo
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.335-341
    • /
    • 2021
  • Zinc is an essential micronutrient with crucial roles in multiple facets of biological processes. Dysregulated zinc homeostasis impairs overall immune function and resultantly increases susceptibility to infection. Clinically, zinc supplementation is practiced for treatment of several infectious diseases, such as diarrhea and malaria. Recent focus on zinc as a beneficial element for immune system support has resulted in investigation of the immunomodulatory roles of zinc in a variety of immune cells. Besides its classical role as a cofactor that regulates the structural function of thousands of proteins, accumulating evidence suggests that zinc also acts, in a manner similar to calcium, as an ionic regulator of immune responses via participation as an intracellular messenger in signaling pathways. In this review, we focus on the role of zinc as a signaling molecule in major pathways such as those downstream of Toll-like receptors-, T cell receptor-, and cytokine-mediated signal transduction that regulate the activity and function of monocytes/macrophages and T cells, principal players in the innate and adaptive immune systems.

보음면역단의 면역 증강 효과 (Immune Enhancing Effect of Boummyunyuck-dan)

  • 김태균;문석재;원진희;김동웅;이종덕;문구
    • 대한한의학회지
    • /
    • 제24권1호
    • /
    • pp.54-64
    • /
    • 2003
  • Objective : To investigate immune enhancing effects of Boummyunyuck-dan (BMD) Methods : In this study I investigated the effect of BMD on cell proliferation and viability. In addition, I investigated production of cytokines (IL-2, IL-4 and $IFN-{\gamma}$), NO, and $TNF-{\alpha}$ in human T-cell leukemia, MOLT-4 cells. The cells were cultured for 24h in the presence or absence of BMD. Result : BMD increased the cell viability by 15% (P<0.05) and enhanced IL-2, IL-4 and $IFN-{\gamma}$ production compared with media control in a dose-dependent manner (P<0.01) at 24h. BMD also increased mRNA and protein expression levels of $IFN-{\gamma}$ in MOLT-4 cells. In addition, I also assessed the effects of BMD on production of NO and $TNF-{\alpha}$ from the peritoneal macrophages because NO and $TNF-{\alpha}$ as a potent macrophage-derived immune reaction regulatory molecule has received increasing attention. However, BMD had no effect on NO and $TNF-{\alpha}$ production in the cells. Conclusion : These data indicate that BMD has some immune-enhancing effect, and that its action may be due to the proliferation and cytokine production of T cells.

  • PDF

Exosomal Communication Between the Tumor Microenvironment and Innate Immunity and Its Therapeutic Application

  • Hyunseok Kong;Sang Bum Kim
    • IMMUNE NETWORK
    • /
    • 제22권5호
    • /
    • pp.38.1-38.24
    • /
    • 2022
  • Exosomes, which are well-known nanoscale extracellular vesicles, are multifunctional biomaterials derived from endosomes and perform various functions. The exosome is a critical material in cell-cell communication. In addition, it regulates the pathophysiological conditions of the tumor microenvironment in particular. In the tumor microenvironment, exosomes play a controversial role in supporting or killing cancer by conveying biomaterials derived from parent cells. Innate immunity is a crucial component of the host defense mechanism, as it prevents foreign substances, such as viruses and other microbes and tumorigenesis from invading the body. Early in the tumorigenesis process, the innate immunity explicitly recognizes the tumor via Ags and educates the adaptive immunity to eliminate it. Recent studies have revealed that exosomes regulate immunity in the tumor microenvironment. Tumor-derived exosomes regulate immunity against tumor progression and metastasis. Furthermore, tumor-derived exosomes regulate polarization, differentiation, proliferation, and activation of innate immune cells. Exosomes produced from innate immune cells can inhibit or support tumor progression and metastasis via immune cell activation and direct cancer inhibition. In this study, we investigated current knowledge regarding the communication between tumor-derived exosomes and innate immune cell-derived exosomes (from macrophages, dendritic cells, NK cells, and neutrophils) in the tumor microenvironment. In addition, we discussed the potential development of exosomal immunotherapy using native or engineered exosomes against cancer.

Anti-CD3, CD16과 CD56 단일항체와 IL-2를 사용하여 활성화시킨 사람의 림프구 (Human Activated Lymphocyte Treated with Anti-CD3, CD16, CD56 Monoclonal Antibody and IL-2)

  • 홍선민;이동욱;강진구;김한수;조성훈
    • IMMUNE NETWORK
    • /
    • 제5권1호
    • /
    • pp.11-15
    • /
    • 2005
  • Background: Throughtout the last three decades, the therapy of leukemias and lymphoma has set the stage for curative cancer therapy in systemic malignant disease. This was the result of an integrated work of basic reaserch and clinical investigators leading to more aggressive albeit tolerable protocol of chemotherapy and radiotherapy. High dose therapy marks the most elaborated strategies in this field today. However, intensification of conventional therapeutic modalities as mentioned has to be based on new approaches and the exploration of new antineoplastic mechanisms. This insight has resulted in immune therapy of cancer. Among the cells of the immune system, natural killer (NK) cells and T cells are of major interest for the development of therapeutic strategies. Methods: Cytotoxicity to target cells was measured by LDH release method, Characterization of activated lymphocyte was measured by Flow cytometry analysis. Anti-CD3, 16, 56 monoclonal antibody and IL-2 were used for the activation of NK and T cell. The analysis of effect of activated lymphocyte, in vivo, were used by Balb/c nude mouse. Results and Conclusion: Cytotoxicity to K562 cells was significantly higher in the mixture group of NK and T cells than that of a group of activating T cells. The survivors and the rate of reduction of size of tumor craft of nude mouse group treatment with activated lymphocyte was higher than that of the group without treatment with activated lymphocyte. Therefore, this results are suggested that the activated lymphocytes by anti-CD3, CD16 and CD56 can reduce the malignancy effect of lymphoma.