• 제목/요약/키워드: immune response system

검색결과 488건 처리시간 0.021초

Effects of Acanthopanacis cortex Extracts on the Cytokine-inducing and Immune response in Mice (생쥐에서 오가피에 의한 싸이토카인 유도와 면역반응에 관한 효과)

  • Lim, Seok-rhin
    • Journal of Haehwa Medicine
    • /
    • 제10권2호
    • /
    • pp.179-188
    • /
    • 2002
  • This experimental study was carried out to evaluate the effects of Acanthopanacis cortex on Cytokine-inducing and and immune response in Mice. In order to investigate the effect of Acanthopanacis cortex, the following was performed; Cytotoxicity, in vitro, the fraction of $CD4^+$, $CD8^+$, $B220^+$ in splenic cell, gene expression of IL-12(p35), IL-12(p40), IFN-${\gamma}$, and splenic cell proliferation by Acanthopanacis cortex. Analysis of cytokine gene expression was carried out by RT-PCR amplification. Amplified PCR products were electrophoresed on 1.2% agarose gel, and the analysis (Ht) was used to 1D-density program. The results were obtained as follows. Acanthpanacis cortex showed didn't have cell toxicity under $12{\mu}g/m{\ell}$ group on mouse lung fibroblast cells. In an in vitro model using mouse peripheral blood mononuclear cells (PBMCs), extract of Acanthpanacis cortex induced multiple cytokine, including interleukin-12 (p35), interleukin-12 (p40), interferon-gamma (IFN-${\gamma}$). The extract also enhanced the percentages of the $CD4^+$, and $CD8^+$ in the untreated control were $22.1{\pm}3.3$ to $38.4{\pm}2.1$, and $5.0{\pm}0.4$ to $10.7{\pm}0.3%$, respectively. From above findings, it is suggested that Acanthopanacis cortex is able to anti-cancer and activate immune response system.

  • PDF

Emerging role of bystander T cell activation in autoimmune diseases

  • Shim, Chae-Hyeon;Cho, Sookyung;Shin, Young-Mi;Choi, Je-Min
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.57-64
    • /
    • 2022
  • Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.

The role of immunomodulatory metabolites in shaping the inflammatory response of macrophages

  • Doyoung, Park;Gyumin, Lim;Sung-Jin, Yoon;Hyon-Seung, Yi;Dong Wook, Choi
    • BMB Reports
    • /
    • 제55권11호
    • /
    • pp.519-527
    • /
    • 2022
  • Macrophage activation has long been implicated in a myriad of human pathophysiology, particularly in the context of the dysregulated capacities of an unleashing intracellular or/and extracellular inflammatory response. A growing number of studies have functionally coupled the macrophages' inflammatory capacities with dynamic metabolic reprogramming which occurs during activation, albeit the results have been mostly interpreted through classic metabolism point of view; macrophages take advantage of the rewired metabolism as a source of energy and for biosynthetic precursors. However, a specific subset of metabolic products, namely immune-modulatory metabolites, has recently emerged as significant regulatory signals which control inflammatory responses in macrophages and the relevant extracellular milieu. In this review, we introduce recently highlighted immuno-modulatory metabolites, with the aim of understanding their physiological and pathological relevance in the macrophage inflammatory response.

Inferring B-cell derived T-cell receptor induced multi-epitope-based vaccine candidate against enterovirus 71: a reverse vaccinology approach

  • Subrat Kumar Swain;Subhasmita Panda;Basanta Pravas Sahu;Soumya Ranjan Mahapatra;Jyotirmayee Dey;Rachita Sarangi;Namrata Misra
    • Clinical and Experimental Vaccine Research
    • /
    • 제13권2호
    • /
    • pp.132-145
    • /
    • 2024
  • Purpose: Enterovirus 71, a pathogen that causes hand-foot and mouth disease (HFMD) is currently regarded as an increasing neurotropic virus in Asia and can cause severe complications in pediatric patients with blister-like sores or rashes on the hand, feet, and mouth. Notwithstanding the significant burden of the disease, no authorized vaccine is available. Previously identified attenuated and inactivated vaccines are worthless over time owing to changes in the viral genome. Materials and Methods: A novel vaccine construct using B-cell derived T-cell epitopes from the virulent polyprotein found the induction of possible immune response. In order to boost the immune system, a beta-defensin 1 preproprotein adjuvant with EAAAK linker was added at the N-terminal end of the vaccine sequence. Results: The immunogenicity of the designed, refined, and verified prospective three-dimensional-structure of the multi-epitope vaccine was found to be quite high, exhibiting non-allergenic and antigenic properties. The vaccine candidates bound to toll-like receptor 3 in a molecular docking analysis, and the efficacy of the potential vaccine to generate a strong immune response was assessed through in silico immunological simulation. Conclusion: Computational analysis has shown that the proposed multi-epitope vaccine is possibly safe for use in humans and can elicit an immune response.

Effects of Nalbuphine on the Primary Humoral Immune Response in Mice (Nalbuphine이 마우스의 일차 체액성 면역반응에 미치는 영향)

  • Yun, Hee-Eun;Pyo, Myoung-Yun
    • Environmental Analysis Health and Toxicology
    • /
    • 제20권4호통권51호
    • /
    • pp.343-350
    • /
    • 2005
  • In order to investigate the of effects of nalbuphine on immune system in mice, we examined the various immunological parameters. After single oral administration of nalbuphine (130, 260, 390 mg/kg, i.p.) to female ICR mite, the weights of bodies and organs (thymus, spleen, liver, kidney), and hematological parameters were examined on day 2, 4, 6, and 8. The increased rate of body weight, relative weight of organ, and hematological parameters in nalbuphine -treated groups, were not significantly changed when compared with control group. However, number of WBC was decreased by the treatment of nalbuphine. To assess the effects of nalbuphine on humoral immune responses, splenic IgM plaque forming cell (PFC) and serum IgM were assayed. When nalbuphine wat administered after immunization with SRBC, but not before immunization, splenic IgM PFC and ,serum IgM level against SRBC were significantly lowered in a dole -dependent manner. These results indicate that the suppressive effects of nalbuphine on primary humoral immune response may be dependent on the timing of its administration relative to the initial antigenic sensitization.

Interleukin-8 (IL-8) Expression in the Olive Flounder (Paralichthys olivaceus) against Viral Hemorrhagic Septicemia Virus (VHSV) Challenge

  • Kim, Kyung-Hee;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Lee, Young Mee;Kim, Woo-Jin
    • Development and Reproduction
    • /
    • 제23권3호
    • /
    • pp.231-238
    • /
    • 2019
  • Interleukin-8 (IL-8) is an inflammatory cytokine that plays an important role in the inflammatory response through the activation of neutrophil cells. The expression of IL-8 was investigated in early developmental stages of the olive flounder and in tissues of 8-month-old individuals. The expression of IL-8 increased after the initiation of the immune system rather than at the early stage of development, and high expression was observed in the gills and spleen, the organs associated with immunity and metabolism. In addition, IL-8 expression after infection by viral hemorrhagic septicemia virus significantly increased in the fin, gill, muscles, and spleen. These results suggest that IL-8 is closely related to inflammation and immune regulation in the immune response of the olive flounder and may be used as a basis for studies on the immune systems of other fish.

Mucosal Immune Response and Adjuvant Activity of Genetically Fused Escherichia coli Heat-Labile Toxin B Subunit

  • Lee, Yung-Gi;Kang, Hyung-Sik;Lee, Cheong-Ho;Paik, Sang-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.490-497
    • /
    • 2004
  • Although the E. coli heat-labile enterotoxin B subunit (LTB) is known to be a potent mucosal adjuvant towards co-administrated unrelated antigens and immunoregulator in T-helper 1-type-mediated autoimmune diseases, a more efficient and useful LTB is still required for prospective vaccine adjuvants. To determine whether a novel chimeric LTB subunit would produce an enhanced mucosal adjuvant activity and immune response, a number of LTB subunits were genetically fused with chimeric proteins using the epitope genes of the envelope glycoprotein E2 (gp51-54) from the classical swine fever virus (CSFV). It was found that the total serum immunoglobulin (Ig) levels of BALB/c mice orally immunized with chimeric proteins containing an N-terminal linked LTB subunit (LE1, LE2, and LE3) were higher than those of mice immunized with LTB, E2 epitope, and chimeric proteins that contained a C-terminal linked LTB subunit. In particular, immunization with LE1 markedly increased both the total serum Ig and fecal IgA level compared to immunization with LTB or the E2 epitope. Accordingly, the current results demonstrated that the LTB subunit in a chimeric protein exhibited a strong mucosal adjuvant effect as a carrier molecule, while the chimeric protein containing the LTB subunit stimulated the mucosal immune system by mediating the induction of antigen-specific serum Ig and mucosal IgA. Consequently, an LE1-mediated mucosal response may contribute to the development of effective antidiarrhea vaccine adjuvants.

Genome Characteristics of Lactobacillus fermentum Strain JDFM216 for Application as Probiotic Bacteria

  • Jang, Sung Yong;Heo, Jaeyoung;Park, Mi Ri;Song, Min-Ho;Kim, Jong Nam;Jo, Sung Ho;Jeong, Do-Youn;Lee, Hak Kyo;Kim, Younghoon;Oh, Sangnam
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1266-1271
    • /
    • 2017
  • Lactobacillus fermentum strain JDFM216, isolated from a Korean infant feces sample, possesses the ability to enhance the longevity and immune response of a Caenorhabditis elegans host. To explore the characteristics of strain JDFM216 at the genetic level, we performed whole-genome sequencing using the PacBio system. The circular draft genome has a total length of 2,076,427 bp and a total of 2,682 encoding sequences were identified. Five phylogenetically featured genes possibly related to the longevity and immune response of the host were identified in L. fermentum strain JDFM216. These genes encode UDP-N-acetylglucosamine 1-carboxyvinyltransferase (E.C. 2.5.1.7), ErfK/YbiS/YcfS/YnhG family protein, site-specific recombinase XerD, homocysteine S-methyltransferase (E.C. 2.1.1.10), and aspartate-ammonia ligase (E.C. 6.3.1.1), which are involved in peptidoglycan synthesis and amino acid metabolism in the gut environment. Our findings on the genetic background of L. fermentum strain JDFM216 and its potential candidate genes for host longevity and immune response provide new insight for the application of this strain in the food industry as newly isolated functional probiotic.

The Mucosal Immune System for the Development of New Generation Vaccine

  • Yuki, Yoshikazu;Kiyono, Hiroshi
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 한국미생물생명공학회 2003년도 2003 Annual Meeting, BioExhibition and International Symposium
    • /
    • pp.55-62
    • /
    • 2003
  • The mucosal immune system provides a first line of defense against invasion of infectious agents via inhalation, ingestion and sexual contact. For the induction of protective immunity at these invasion sites, one must consider the use of the CMIS, which interconnects inductive tissues, including PP and NALT, and effector tissues of the intestinal, respiratory and genitourinary tracts. In order for the CMIS to induce maximal protective mucosal immunity, co-administration of mucosal adjuvant or use of mucosal antigen delivery vehicle has been shown to be essential. When vaccine antigen is administered via oral or nasal route, antigen-specific Th 1 and Th2 cells, cytotoxic T lymphocytes(CTLs) and IgA B cell responses are effectively induced by the CMIS. In the early stages of induction of mucosal immune response, the uptake of orally or nasally administered antigens is achieved through a unique set of antigen-sampling cells, M cells located in follicle-associated epithelium(FAE) of inductive sites. After successful uptake, the antigens are immediately processed and presented by the underlying DCs for the generation of antigen-specific T cells and IgA committed B cells. These antigen-specific lymphocytes are then home to the distant mucosal effector tissues for the induction of antigen-specific humoral(e.g., IgA) and cell-mediated (e.g., CTL and Th1) immune responses in order to form the first line of defense. Elucidation of the molecular/cellular characteristics of the immunological sequence of mucosal immune response beginning from the antigen sampling and processing/presentation by M cells and mucosal DCs followed by the effector phase with antigen-specific lymphocytes will greatly facilitate the design of a new generation of effective mucosal antigen-specific lymphocytes will greatly facilitate the design of a new generation of a new generation of effective mucosal adjuvants and of a vaccine deliver vehicle that maximizes the use of the CMIS.

  • PDF

Increase in the Th1-Cell-Based Immune Response in Healthy Workers Exposed to Low-Dose Radiation - Immune System Status of Radiology Staff

  • Karimi, Gholamreza;Balali-Mood, Mahdi;Alamdaran, Seyed-Ali;Badie-Bostan, Hassan;Mohammadi, Elaheh;Ghorani-Azam, Adel;Sadeghi, Mahmood;Riahi-Zanjani, Bamdad
    • Journal of Pharmacopuncture
    • /
    • 제20권2호
    • /
    • pp.107-111
    • /
    • 2017
  • Objectives: Radiation is one of the most important sources of free radical (such as reactive oxygen species) production, which plays an essential role in the etiology of over hundred diseases. The aim of the study was to investigate some immune parameters and hematological indices in healthy workers of the Radiology Department, University Hospital of Mashhad, Iran. Methods: The study was performed on 50 healthy workers: 30 radiology staff as the case group and 20 laboratory workers as the control group. The radiation dose received by the radiology staff participating in the study was less than the annual maximum permissible level, 50 millisievert. Hematological parameters, lymphocyte proliferation and cytokine production were studied in both groups. Results: Among healthy radiology workers, the hematological indices did not differ statistically; however, their proliferation indices and $IFN-{\gamma}$ levels showed significant increases in parallel with decreases in the IL-4 levels as compared to controls. The immune system of workers exposed to low-dose ionizing radiation was found to be shifted from a Type 2 to a Type 1 response to promote cellular immunity. Conclusion: Based on our data, exposure to low-dose ionizing radiation may decrease the prevalence, frequency, and recurrence of various cancers and infectious diseases because of an increase in Th1-cell-based response, thus leading to more protection of the human body against tumor cells and foreign agents and possibly increased longevity. However, due to high rate of fluoroscopy use for interventional radiology, we suggest continuing research projects on radiation protection and hazards to prevent irreversible damage. As a recommendation, in future studies, radiology staff with a weakened immunity due to high radiation exposure should be considered as good choices to be treated using acupuncture techniques because acupuncture has been demonstrated to enhance the function and the number of immune cells.