• Title/Summary/Keyword: immune regulation

Search Result 587, Processing Time 0.022 seconds

Tissue Distribution of HuR Protein in Crohn's Disease and IBD Experimental Model (염증성 장질환 모델 및 크론병 환자에서의 점막상피 HuR 단백질의 변화 분석)

  • Choi, Hye Jin;Park, Jae-Hong;Park, Jiyeon;Kim, Juil;Park, Seong-Hwan;Oh, Chang Gyu;Do, Kee Hun;Song, Bo Gyoung;Lee, Seung Joon;Moon, Yuseok
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1339-1344
    • /
    • 2014
  • Inflammatory bowel disease is an immune disorder associated with chronic mucosal inflammation and severe ulceration in the gastrointestinal tract. Antibodies against proinflammatory cytokines, including TNF${\alpha}$, are currently used as promising therapeutic agents against the disease. Stabilization of the transcript is a crucial post-transcriptional process in the expression of proinflammatory cytokines. In the present study, we assessed the expression and histological distribution of the HuR protein, an important transcript stabilizer, in tissues from experimental animals and patients with Crohn's disease. The total and cytosolic levels of the HuR protein were enhanced in the intestinal epithelia from dextran sodium sulfate (DSS)-treated mice compared to those in control tissues from normal mice. Moreover, the expression of HuR was very high only in the mucosal and glandular epithelium, and the relative localization of the protein was sequestered in the lower parts of the villus during the DSS insult. The expression of HuR was significantly higher in mucosal lesions than in normal-looking areas. Consistent with the data from the animal model, the expression of HuR was confined to the mucosal and glandular epithelium. These results suggest that HuR may contribute to the post-transcriptional regulation of proinflammatory genes during early mucosal insults. More mechanistic investigations are warranted to determine the potential use of HuR as a predictive biomarker or a promising target against IBD.

Effects of Red-ginseng Extracts on the Activation of Dendritic Cells (고려홍삼의 수지상세포 활성화 효과)

  • Kim, Do-Soon;Park, Jueng-Eun;Seo, Kwon-Il;Ko, Sung-Ryong;Lee, Jong-Won;Do, Jae-Ho;Yee, Sung-Tae
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.117-127
    • /
    • 2006
  • Ginseng is a medicinal herb widely used in Asian countries. Dendritic cells(DCs) play a pivotal role in the initiation of T cell-mediated immune responses, making them an attractive cellular adjuvant for use in cancer vaccines. In this study, we examined the effects of Red-ginseng(water extract, edible and fermented ethyl alcohol extract, crude saponin) on the DCs phenotypic and functional maturation. Immature DCs were cultured in the presence of GM-CSF and IL-4, and the generated immature DCs were stimulated by water extract, edible and fermented ethyl alcohol extract, crude saponin and LPS, respectively, for 24hours. The expression of surface co-stimulatory molecules, including MHC(major histocompatibility complex) class II, CD40, CD80 and CD86, was increased on DCs that were stimulated with crude saponin, but antigen-uptake capacity was decreased. The antigen-presenting capacity of Red-ginseng extracts-treated DCs as analyzed by allogeneic T cells proliferation and IL-2, $IFN-{\gamma}$ production was increased. Furthermore, $CD4^+$ and $CD8^+$ syngeneic T cell(OVA-specific) proliferation and $IFN-{\gamma}$ production was significantly increased. However, $CD4^+$ syngeneic T cell secreted higher levels of IL-2 in responding but not $CD8^+$ syngeneic T cell. These results indicate the immunomodulatory properties of Red-ginseng extracts, which might be therapeutically useful in the control of cancers and immunodeficient diseases through the up-regulation of DCs maturation.

Anti-neuroinflammatory Effect of Teleogryllus emma Derived Teleogryllusine in LPS-stimulated BV-2 Microglia (BV-2 미세아교세포에서 왕귀뚜라미 유래 Teleogryllusine의 신경염증 억제 효과)

  • Seo, Minchul;Shin, Yong Pyo;Lee, Hwa Jeong;Baek, Minhee;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.999-1006
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells, well known as the main immune cells in the central nervous system (CNS), are considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Teleogryllus emma is widely consumed around the world for its broad-spectrum therapeutic effect. In a previous work, we performed transcriptome analysis on T. emma in order to obtain the diversity and activity of its antimicrobial peptides (AMPs). AMPs are found in a variety of species, from microorganisms to mammals. They have received much attention as candidates oftherapeutic drugs for the treatment of inflammation-associated diseases. In this study, we investigated the anti-neuroinflammatory effect of Teleogryllusine (VKWKRLNNNKVLQKIYFVKI-NH2) derived from T. emma on lipopolysaccharide (LPS) induced BV-2 microglia cells. Teleogryllusine significantly inhibited nitric oxide (NO) production without cytotoxicity, and reducing pro-inflammatory enzymes expression such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, Telegryllusine also inhibited the expression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) through down-regulation of the mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathway. These results suggest that T. emma-derived Teleogryllusine could be a good source of functional substances that prevent neuroinflammation and neurodegenerative diseases.

Qualitative Analysis of $GeO_2$ in Germanium-Fortified Yeast. (게르마늄강화효모 내의 $GeO_2$ 정성분석)

  • Kim, So-Yeun;Kim, Myoung-Hee;Woo, Hee-Gweon;Kim, Bo-Hye;Sohn, Tsang-Uk;Jung, Jin-Wook;Baek, Dae-Heoun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.163-172
    • /
    • 2007
  • This study was designed to investigate that inorganic germanium $(GeO_2)$ did not exist in germanium-fortified yeast or obtained to non-detectable value by current analytical methods and equipments. For this purpose, we achieved $GeO_2$ qualitative analysis protocol which could be the scientific basis of the study. Since reddish brown precipitate was formed from the reaction of $GeO_2$ with 1 equiv $NaBH_4$, and dark brown precipitate was also formed from the reaction of $GeO_2$ with 2 equiv $NaBH_4$, $GeO_2$ was qualitatively analyzed by observing these particular colored-precipitates. Because no color change was showed from the reaction between $NaBH_4$ and $SiO_2$, the color change could be caused by charge transfer transition on Ge-O and B binding properties. The reaction between $NaBH_4$ and germanium-fortified yeast did not show any color change and precipitate formation which meant no $GeO_2$ existed in germanium-fortified yeast. The reaction between $NaBH_4$ and supernatant specimen collected from the outside of dialysis membrane (MWCO 1,200 dalton) did not show any color change and precipitate formation. Therefore, we considered that the both germaniums in and outside of the dialysis membrane were organic germaniums. Germanium-fortified yeast which was biosynthesized organic germanium can be applied not only as a new functional material for improving health, prevention and treatment of chronic degenerative diseases including cancers, and the regulation of immune system, but also as a new materials.

Reactive Oxygen Species Mediates Lysophosphatidic Acid-induced Migration of SKOV-3 Ovarian Cancer Cells (SKOV-3 난소암 세포주에서 lysophosphatidic acid 유도 세포의 이동에 있어 활성산소의 역할)

  • Kim, Eun Kyoung;Lee, Hye Sun;Ha, Hong Koo;Yun, Sung Ji;Ha, Jung Min;Kim, Young Whan;Jin, In Hye;Shin, Hwa Kyoung;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1621-1627
    • /
    • 2012
  • Cell motility plays an essential role in many physiological responses, such as development, immune reaction, and angiogenesis. In the present study, we showed that lysophosphatidic acid (LPA) modulates cancer cell migration by regulation of generation of reactive oxygen species (ROS). Stimulation of SKOV-3 ovarian cancer cells with LPA strongly promoted migration. but this migration was completely blocked by pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Inhibition of the ERK pathway had no effect on migration. Stimulation of SKOV-3 ovarian cancer cells with LPA significantly induced the generation of ROS in a time-dependent manner. LPA-induced generation of ROS was significantly blocked by pharmacological inhibition of PI3K or Akt, but inhibition of the ERK signaling pathway had little effect. LPA-induced generation of ROS was blocked by pretreatment of SKOV-3 ovarian cancer cells with an NADPH oxidase inhibitor, whereas inhibition of xanthine oxidase, cyclooxygenase, or mitochondrial respiratory chain complex I had no effect. Scavenging of ROS by N-acetylcysteine completely blocked LPA-induced migration of SKOV-3 ovarian cancer cells. Inhibition of NADPH oxidase blocked LPA-induced migration whereas inhibition of xanthine oxidase, cyclooxygenase, or mitochondrial respiratory chain complex I did not affect LPA-induced migration of SKOV-3 ovarian cancer cells. Given these results, we suggest that LPA induces ROS generation through the PI3K/Akt/NADPH oxidase signaling axis, thereby regulating cancer cell migration.

Radioimmunoassay for Determination of Serum Macrophage Migration Inhibitory Factor (혈중 대식세포 유주 저지 인자 측정을 위한 방사면역측정법)

  • Lee, Tae-Sup;Shin, Seok-Hwan;Song, Jee-In;Woo, Kwang-Sun;Chung, Wee-Sup;Choi, Chang-Woon;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.6
    • /
    • pp.532-539
    • /
    • 2004
  • Purpose: There has been a renewal of interest in Macrophage migration inhibitory factor (MIF), especially correlation in pathogenesis of sepsis by many infectious diseases and in regulation of host inflammatory and immune response. We developed immunoradiometric assay (IRMA) to determine serum human MIF concentration. Materials and Methods: The IRMA system utilizes solid phase bound monoclonal anti-recombinant human MIF (rhMIF) antibody as a capture antibody, biotinylated polyclonal anti-rhMIF antibody as a detector antibody. We applied with rhMIF that concentration of standard solutions increased from 0 ng/ml to 100 ng/ml. We used $^{125}I$-streptavidin (SA) as radiotracer to determination of rhMIF concentration. Streptavidin was labeled with $^{125}I$ by Chloramine-T method and $^{125}I$-SA was purified by ultracentrifugation. $^{125}I$-SA stability was evaluated by ITLC analysis at $4^{\circ}C$ and room temperatures until 60days. To validate IRMA system for MIF, we experimented intra-assay and inter-assay coefficients of variation, recovery test and dilution test. Results: Radiolabeling yield of $^{125}I$-SA was 87% and purified $^{125}I$-SA retained above 99% radiochemical purity. $^{125}I$-SA showed above 93% stability in $4^{\circ}C$ until 60days that it is good for immunoradiometric assay as radiotracer. Plotted standard dose response curve showed that increased concentration of rhMIF linearly correlated (R2=0.99) with bound radioactivity of $^{125}I$-SA. The highest intra- and inter-assay coefficients of variation were 5.5% and 7.6%, respectively. The average of recovery of MIF in samples was 102%. In dilution test, linear response curves were obtained (R2=0.97). Conclusion: Radioimmunoassay using $^{125}I$-SA as radiotracer thought to be useful for the determination of serum MIF concentration, and further, its data will be used to evaluate the correlation between clinical significance and serum MIF concentration in patients with various inflammatory diseases.

Activation of NF-${\kappa}B$ in Lung Cancer Cell Lines in Basal and TNF-${\alpha}$ Stimulated States (폐암 세포에서 기저 상태와 TNF-${\alpha}$ 자극 시 NF-${\kappa}B$의 활성화)

  • HwangBo, Bin;Lee, Seung-Hee;Lee, Choon-Taek;Yoo, Chul-Gyu;Han, Sung-Koo;Shim, Young-Soo;Kim, Young-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : The NF-${\kappa}B$ transcription factors control various biological processes including the immune response, acute phase reaction and cell cycle regulation. NF-${\kappa}B$ complexes are retained in the cytoplasm in the basal state and various stimuli cause a translocation of the NF-${\kappa}B$ complexes into the nucleus where they bind to the ${\kappa}B$ elements and regulate the transcription of the target genes. Recent reports also suggest that NF-${\kappa}B$ proteins are involved in oncogenesis, tumor growth and metastasis. High expression of NF-${\kappa}B$ expression was reported in many cancer cell lines and tissues. The constitutive activation of NF-${\kappa}B$ was also reported in several cancer cell lines supporting its role in cancer development and survival. The anti-apoptotic action of NF-${\kappa}B$ is important for cancer survival. NF-${\kappa}B$ also controls the expression of several proteins that are important for cellular adhesion (ICAM-1, VCAM-1) suggesting a role in cancer metastasis. In lung cancer, high expression levels of the NF-${\kappa}B$ subunit p50 and c-Rel were reported. In fact, high expression does not mean a high activity, and the activation pattern of NF-${\kappa}B$ in lung cancer has not been reported. Materials and Methods : In this study, the NF-${\kappa}B$ nuclear binding activity in the basal and TNF-${\alpha}$ stimulated states were exmined in various lung cancer cell lines and compared with the normal bronchial epithelial cell line. Twelve lung cancer cell lines including the non-small cell and small cell lung cancer cell lines (A549, NCI-H358, NCI-H441, NCI-H552, NCI-H2009, NCI-H460, NCI-H1229, NCI-H1703, NCI-H157, NCI-H187, NCI-H417, NCI-H526) and BEAS-2B bronchial epithelial cell line were used. To evaluate the NF-${\kappa}B$ expression and DNA binding activity, western blot analysis and an electrophoretic mobility shift assay with the nuclear protein extracts. Results : The basal expressions of the p65 and p50 subunits were observed in the BEAS-2B cell line and all lung cancer cell lines except for NCI-H358 and NCI-H460. The expression levels of p65 and p50 were increased 30 minutes after stimulation with TNF-${\alpha}$ in BEAS-2B and in 10 lung cancer cell lines. In the NCI-H358 and NCI-H460 cell lines, p65 expression was not observed in the basal and stimulated states and the two p50 related protein levels were higher after stimulation with TNF-${\alpha}$ These new proteins were smaller than p50 and are thought to be variants of p50. In the basal state, NF-${\kappa}B$ was nearly activated in the BEAS-2B and all lung cancer cell lines. The DNA binding activity of the NF-${\kappa}B$ complexes was markedly higher after stimulation with TNF-${\alpha}$ In the BEAS-2B and all lung cancer cell line except for NCI-H358 and NCI-H460, the activated NF-${\kappa}B$ complex was a p65/p50 heterodimer. In the NCI-H358 and NCI-H460 lung cancer cell lines, the NF-${\kappa}B$ complex was variant of a p50/p50 homodimer. Conclusion : The NF-${\kappa}B$ activation pattern in the lung cancer cell lines and the normal bronchial epithelial cell lines was similar except for the activation of a variant of the p50/p50 homodimer in some lung cancer cell linse.