• Title/Summary/Keyword: immune microenvironment

Search Result 105, Processing Time 0.022 seconds

Psoriasis as a T-cell-mediated Immunologic Disease (T 세포 매개 면역질환으로서의 건선)

  • Lew, Wook
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.189-194
    • /
    • 2002
  • Although the exact mechanism responsible for the pathogenesis of psoriasis is unclear, interferon-${\gamma}$ producing type 1 T cells have been reported to play a significant role. Infiltrating activated type 1 T cells in the lesions are believed to be responsible for stimulating keratinocytes, which produce many cytokines and growth factors. The hyperproliferative epidermis is understood to be the result of either the cytokines produced by the intraepidermal T cells or the reactive phenomenon after keratinocyte damage. The microenvironment in psoriatic lesions deviates toward the type 1 status, because of the increased type 1 cytokines and either the decreased or unchanged type 2 cytokines observed in psoriatic lesions. Therefore, this review focused on a T-cell-mediated immunological basis for the current hypothesis of the psoriasis pathogenesis.

Improved Anti-Cancer Effect of Curcumin on Breast Cancer Cells by Increasing the Activity of Natural Killer Cells

  • Lee, Hwan Hee;Cho, Hyosun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.874-882
    • /
    • 2018
  • Curcumin is known to possess various biological functions, including anti-inflammatory, anti-oxidative, and anti-cancer activities. Natural killer (NK) cells are large lymphocytes that directly kill cancer cells. However, many aggressive cancers, including breast cancer, were reported to escape the successful killing of NK cells in a tumor microenvironment. In this study, we investigated the anti-cancer effect of curcumin in coculture of human breast carcinoma MDA-MB-231 and NK (NK-92) cells. We found that curcumin had an immune-stimulatory effect on NK-92 by increasing the surface expression of the $CD16^+$ and $CD56^{dim}$ population of NK-92. We confirmed that the cytotoxic effect of NK-92 on MDA-MB-231 was significantly enhanced in the presence of curcumin, which was highly associated with the activation of Stat4 and Stat5 proteins in NK-92. Finally, this improved anticancer effect of curcumin was correlated with decreased expression of pErk and PI3K in MDA-MB-231.

Are Macrophages in Tumors Good Targets for Novel Therapeutic Approaches?

  • Alahari, Samthosh V.;Dong, Shengli;Alahari, Suresh K.
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.95-104
    • /
    • 2015
  • The development of cancer has been an extensively researched topic over the past few decades. Although great strides have been made in cancer prevention, diagnosis, and treatment, there is still much to be learned about cancer's micro-environmental mechanisms that contribute to cancer formation and aggressiveness. Macrophages, lymphocytes which originate from monocytes, are involved in the inflammatory response and often dispersed to areas of infection to fight harmful antigens and mutated cells in tissues. Macrophages have a plethora of roles including tissue development and repair, immune system functions, and inflammation. We discuss various pathways by which macrophages get activated, various approaches that can regulate the function of macrophages, and how these approaches can be helpful in developing new cancer therapies.

Mucin in cancer: a stealth cloak for cancer cells

  • Wi, Dong-Han;Cha, Jong-Ho;Jung, Youn-Sang
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.344-355
    • /
    • 2021
  • Mucins are high molecular-weight epithelial glycoproteins and are implicated in many physiological processes, including epithelial cell protection, signaling transduction, and tissue homeostasis. Abnormality of mucus expression and structure contributes to biological properties related to human cancer progression. Tumor growth sites induce inhospitable conditions. Many kinds of research suggest that mucins provide a microenvironment to avoid hypoxia, acidic, and other biological conditions that promote cancer progression. Given that the mucus layer captures growth factors or cytokines, we propose that mucin helps to ameliorate inhospitable conditions in tumor-growing sites. Additionally, the composition and structure of mucins enable them to mimic the surface of normal epithelial cells, allowing tumor cells to escape from immune surveillance. Indeed, human cancers such as mucinous carcinoma, show a higher incidence of invasion to adjacent organs and lymph node metastasis than do non-mucinous carcinoma. In this mini-review, we discuss how mucin provides a tumor-friendly environment and contributes to increased cancer malignancy in mucinous carcinoma.

Current understanding of cancer-intrinsic PD-L1: regulation of expression and its protumoral activity

  • Yadollahi, Pedram;Jeon, You-Kyoung;Ng, Wooi Loon;Choi, Inhak
    • BMB Reports
    • /
    • v.54 no.1
    • /
    • pp.12-20
    • /
    • 2021
  • In the last decade, we have witnessed an unprecedented clinical success in cancer immunotherapies targeting the programmed cell-death ligand 1 (PD-L1) and programmed cell-death 1 (PD-1) pathway. Besides the fact that PD-L1 plays a key role in immune regulation in tumor microenvironment, recently a plethora of reports has suggested a new perspective of non-immunological functions of PD-L1 in the regulation of cancer intrinsic activities including mesenchymal transition, glucose and lipid metabolism, stemness, and autophagy. Here we review the current understanding on the regulation of expression and intrinsic protumoral activity of cancer-intrinsic PD-L1.

Metabolic Challenges in Anticancer CD8 T Cell Functions

  • Andrea M. Amitrano;Minsoo Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.9.1-9.15
    • /
    • 2023
  • Cancer immunotherapies continue to face numerous obstacles in the successful treatment of solid malignancies. While immunotherapy has emerged as an extremely effective treatment option for hematologic malignancies, it is largely ineffective against solid tumors due in part to metabolic challenges present in the tumor microenvironment (TME). Tumor-infiltrating CD8+ T cells face fierce competition with cancer cells for limited nutrients. The strong metabolic suppression in the TME often leads to impaired T-cell recruitment to the tumor site and hyporesponsive effector functions via T-cell exhaustion. Growing evidence suggests that mitochondria play a key role in CD8+ T-cell activation, migration, effector functions, and persistence in tumors. Therefore, targeting the mitochondrial metabolism of adoptively transferred T cells has the potential to greatly improve the effectiveness of cancer immunotherapies in treating solid malignancies.

The Role of T Cells in Obesity-Associated Inflammation and Metabolic Disease

  • Chan-Su Park;Nilabh Shastri
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.13.1-13.14
    • /
    • 2022
  • Chronic inflammation plays a critical role in the development of obesity-associated metabolic disorders such as insulin resistance. Obesity alters the microenvironment of adipose tissue and the intestines from anti-inflammatory to pro-inflammatory, which promotes low grade systemic inflammation and insulin resistance in obese mice. Various T cell subsets either help maintain metabolic homeostasis in healthy states or contribute to obesity-associated metabolic syndromes. In this review, we will discuss the T cell subsets that reside in adipose tissue and intestines and their role in the development of obesity-induced systemic inflammation.

CAR T Cell Immunotherapy Beyond Haematological Malignancy

  • Cedric Hupperetz;Sangjoon Lah;Hyojin Kim;Chan Hyuk Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.6.1-6.19
    • /
    • 2022
  • Chimeric antigen receptor (CAR) T cells, which express a synthetic receptor engineered to target specific antigens, have demonstrated remarkable potential to treat haematological malignancies. However, their transition beyond haematological malignancy has so far been unsatisfactory. Here, we discuss recent challenges and improvements for CAR T cell therapy against solid tumors: Antigen heterogeneity which provides an effective escape mechanism against conventional mono-antigen-specific CAR T cells; and the immunosuppressive tumor microenvironment which provides physical and molecular barriers that respectively prevent T cell infiltration and drive T cell dysfunction and hypoproliferation. Further, we discuss the application of CAR T cells in infectious disease and autoimmunity.

Enhanced Anti-tumor Reactivity of Cytotoxic T Lymphocytes Expressing PD-1 Decoy

  • Jae Hun Shin;Hyung Bae Park;Kyungho Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.2
    • /
    • pp.134-139
    • /
    • 2016
  • Programmed death-1 (PD-1) is a strong negative regulator of T lymphocytes in tumor-microenvironment. By engaging PD-1 ligand (PD-L1) on tumor cells, PD-1 on T cell surface inhibits anti-tumor reactivity of tumor-infiltrating T cells. Systemic blockade of PD-1 function using blocking antibodies has shown significant therapeutic efficacy in clinical trials. However, approximately 10 to 15% of treated patients exhibited serious autoimmune responses due to the activation of self-reactive lymphocytes. To achieve selective activation of tumor-specific T cells, we generated T cells expressing a dominant-negative deletion mutant of PD-1 (PD-1 decoy) via retroviral transduction. PD-1 decoy increased IFN-γ secretion of antigen-specific T cells in response to tumor cells expressing the cognate antigen. Adoptive transfer of PD-1 decoy-expressing T cells into tumor-bearing mice potentiated T cell-mediated tumor regression. Thus, T cell-specific blockade of PD-1 could be a useful strategy for enhancing both efficacy and safety of anti-tumor T cell therapy.

Secretagogin deficiency causes abnormal extracellular trap formation in microglia

  • Yu Gyung Kim;Do-Yeon Kim
    • International Journal of Oral Biology
    • /
    • v.49 no.2
    • /
    • pp.34-41
    • /
    • 2024
  • Extracellular traps (ETs), primarily composed of DNA and antibacterial peptides, are mainly secreted by neutrophils to inhibit pathogen spread and eliminate microorganisms. Recent reports suggest that microglia can also secrete ETs, and these microglial ETs are associated with various neurological conditions, including nerve injury, tumor microenvironment, and ischemic stroke. However, the components and functions of microglial ETs remain underexplored. Secretagogin (Scgn), a calcium-sensor protein, plays a crucial role in the release of peptide hormones, such as insulin, in endocrine cells; however, its function in immune cells, including microglia, is not well understood. Our study demonstrated that Scgn deficiency can lead to the formation of abnormal ETs. We hypothesized that this may involve the c-Jun N-terminal kinase-myeloperoxidase pathway and autophagy.