DOI QR코드

DOI QR Code

Are Macrophages in Tumors Good Targets for Novel Therapeutic Approaches?

  • Alahari, Samthosh V. (McAllister Heart Institute, University of North Carolina School of Medicine) ;
  • Dong, Shengli (Department of Biochemistry and Molecular Biology, LSU School of Medicine) ;
  • Alahari, Suresh K. (Department of Biochemistry and Molecular Biology, LSU School of Medicine)
  • Received : 2014.11.06
  • Accepted : 2014.11.09
  • Published : 2015.02.28

Abstract

The development of cancer has been an extensively researched topic over the past few decades. Although great strides have been made in cancer prevention, diagnosis, and treatment, there is still much to be learned about cancer's micro-environmental mechanisms that contribute to cancer formation and aggressiveness. Macrophages, lymphocytes which originate from monocytes, are involved in the inflammatory response and often dispersed to areas of infection to fight harmful antigens and mutated cells in tissues. Macrophages have a plethora of roles including tissue development and repair, immune system functions, and inflammation. We discuss various pathways by which macrophages get activated, various approaches that can regulate the function of macrophages, and how these approaches can be helpful in developing new cancer therapies.

Keywords

References

  1. Akaogi, J., Yamada, H., Kuroda, Y., Nacionales, D.C., Reeves, W.H., and Satoh, M. (2004). Prostaglandin E2 receptors EP2 and EP4 are up-regulated in peritoneal macrophages and joints of pris tane-treated mice and modulate TNF-alpha and IL-6 production. J. Leukoc. Biol. 76, 227-236. https://doi.org/10.1189/jlb.1203627
  2. Allavena, P., Sica, A., Solinas, G., Porta, C., and Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. 66, 1-9. https://doi.org/10.1016/j.critrevonc.2007.07.004
  3. Bayne, L.J., Beatty, G.L., Jhala, N., Clark, C.E., Rhim, A.D., Stanger, B.Z., and Vonderheide, R.H. (2012). Tumor-derived granulocyte- macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822-835. https://doi.org/10.1016/j.ccr.2012.04.025
  4. Beatty, G.L., Chiorean, E.G., Fishman, M.P., Saboury, B., Teitelbaum, U.R., Sun, W., Huhn, R.D., Song, W., Li, D., Sharp, L.L., et al. (2011). CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612-1616. https://doi.org/10.1126/science.1198443
  5. Biswas, S.K., and Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889-896. https://doi.org/10.1038/ni.1937
  6. Boissier, S., Magnetto, S., Frappart, L., Cuzin, B., Ebetino, F.H., Delmas, P.D., and Clezardin, P. (1997). Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res. 57, 3890-3894.
  7. Boissier, S., Ferreras, M., Peyruchaud, O., Magnetto, S., Ebetino, F.H., Colombel, M., Delmas, P., Delaisse, J.M., and Clezardin, P. (2000). Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res. 60, 2949-2954.
  8. Bronte, V., and Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 5, 641-654. https://doi.org/10.1038/nri1668
  9. Campbell, M.J., Tonlaar, N.Y., Garwood, E.R., Huo, D., Moore, D.H., Khramtsov, A.I., Au, A., Baehner, F., Chen, Y., Malaka, D.O., et al. (2010). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res. Treat 128, 703-711.
  10. Chan, L.L., Cheung, B.K., Li, J.C., and Lau, A.S. (2010). A role for STAT3 and cathepsin S in IL-10 down-regulation of IFNgamma- induced MHC class II molecule on primary human blood macrophages. J. Leukoc. Biol. 88, 303-311. https://doi.org/10.1189/jlb.1009659
  11. Chang, C.I., Liao, J.C., and Kuo, L. (2001). Macrophage arginase promotes tumor cell growth and suppresses nitric oxidemediated tumor cytotoxicity. Cancer Res. 61, 1100-1106.
  12. Chen, J., Yao, Y., Gong, C., Yu, F., Su, S., Liu, B., Deng, H., Wang, F., Lin, L., Yao, H., et al. (2011). CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19, 541-555. https://doi.org/10.1016/j.ccr.2011.02.006
  13. Chen, C., Shen, Y., Qu, Q.X., Chen, X.Q., Zhang, X.G., and Huang, J.A. (2012). Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp. Cell Res. 319, 96-102.
  14. Chiodoni, C., Colombo, M.P., and Sangaletti, S. (2010). Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev. 29, 295-307. https://doi.org/10.1007/s10555-010-9221-8
  15. Coffelt, S.B., Hughes, R., and Lewis, C.E. (2009). Tumorassociated macrophages: effectors of angiogenesis and tumor progression. Biochim. Biophys. Acta 1796, 11-18.
  16. Coscia, M., Quaglino, E., Iezzi, M., Curcio, C., Pantaleoni, F., Riganti, C., Holen, I., Monkkonen, H., Boccadoro, M., Forni, G., et al. (2009). Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 14, 2803-2815.
  17. DeNardo, D.G., Barreto, J.B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., and Coussens, L.M. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91-102. https://doi.org/10.1016/j.ccr.2009.06.018
  18. Denardo, S.J., Wen, X., Handberg, E.M., Bairey Merz, C.N., Sopko, G.S., Cooper-Dehoff, R.M., and Pepine, C.J. (2011). Effect of phosphodiesterase type 5 inhibition on microvascular coronary dysfunction in women: a Women's Ischemia Syndrome Evaluation (WISE) ancillary study. Clin. Cardiol. 34, 483-487. https://doi.org/10.1002/clc.20935
  19. Dijkgraaf, E.M., Heusinkveld, M., Tummers, B., Vogelpoel, L.T., Goedemans, R., Jha, V., Nortier, J.W., Welters, M.J., Kroep, J.R., and van der Burg, S.H. (2013). Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res. 73, 2480-2492. https://doi.org/10.1158/0008-5472.CAN-12-3542
  20. Doedens, A.L., Stockmann, C., Rubinstein, M.P., Liao, D., Zhang, N., DeNardo, D.G., Coussens, L.M., Karin, M., Goldrath, A.W., and Johnson, R.S. (2010). Macrophage expression of hypoxiainducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res. 70, 7465-7475. https://doi.org/10.1158/0008-5472.CAN-10-1439
  21. Egeblad, M., and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161-174. https://doi.org/10.1038/nrc745
  22. Elbarghati, L., Murdoch, C., and Lewis, C.E. (2008). Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunobiology 213, 899-908. https://doi.org/10.1016/j.imbio.2008.07.016
  23. Erler, J.T., Bennewith, K.L., Cox, T.R., Lang, G., Bird, D., Koong, A., Le, Q.T., and Giaccia, A.J. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35-44. https://doi.org/10.1016/j.ccr.2008.11.012
  24. Fong, C.H., Bebien, M., Didierlaurent, A., Nebauer, R., Hussell, T., Broide, D., Karin, M., and Lawrence, T. (2008). An antiinflammatory role for IKKbeta through the inhibition of "classical" macrophage activation. J. Exp. Med. 205, 1269-1276. https://doi.org/10.1084/jem.20080124
  25. Fromigue, O., Lagneaux, L., and Body, J.J. (2000). Bisphosphonates induce breast cancer cell death in vitro. J. Bone Miner Res. 15, 2211-2221. https://doi.org/10.1359/jbmr.2000.15.11.2211
  26. Gabrilovich, D.I., and Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162-174. https://doi.org/10.1038/nri2506
  27. Galdiero, M.R., Bonavita, E., Barajon, I., Garlanda, C., Mantovani, A., and Jaillon, S. (2013). Tumor associated macrophages and neutrophils in cancer. Immunobiology 218, 1402-1410. https://doi.org/10.1016/j.imbio.2013.06.003
  28. Garcia, M.A., Collado, M., Munoz-Fontela, C., Matheu, A., Marcos- Villar, L., Arroyo, J., Esteban, M., Serrano, M., and Rivas, C. (2006). Antiviral action of the tumor suppressor ARF. EMBO J. 25, 4284-4292. https://doi.org/10.1038/sj.emboj.7601302
  29. Giraudo, E., Inoue, M., and Hanahan, D. (2004). An aminobisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 114, 623-633. https://doi.org/10.1172/JCI200422087
  30. Goede, V., Brogelli, L., Ziche, M., and Augustin, H.G. (1999). Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int. J. Cancer 82, 765-770. https://doi.org/10.1002/(SICI)1097-0215(19990827)82:5<765::AID-IJC23>3.0.CO;2-F
  31. Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23-35. https://doi.org/10.1038/nri978
  32. Gottfried, E., Kunz-Schughart, L.A., Weber, A., Rehli, M., Peuker, A., Muller, A., Kastenberger, M., Brockhoff, G., Andreesen, R., and Kreutz, M. (2008). Expression of CD68 in non-myeloid cell types. Scand J. Immunol. 67, 453-463. https://doi.org/10.1111/j.1365-3083.2008.02091.x
  33. Green, J.R. (2002). Bisphosphonates in cancer therapy. Curr. Opin. Oncol. 14, 609-615. https://doi.org/10.1097/00001622-200211000-00004
  34. Greten, F.R., Eckmann, L., Greten, T.F., Park, J.M., Li, Z.W., Egan, L.J., Kagnoff, M.F., and Karin, M. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitisassociated cancer. Cell 118, 285-296. https://doi.org/10.1016/j.cell.2004.07.013
  35. Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N.F., Pluddemann, A., Charles, K., Gordon, S., and Balkwill, F.R. (2006). Ovarian cancer cells polarize macrophages toward a tumorassociated phenotype. J. Immunol. 176, 5023-5032. https://doi.org/10.4049/jimmunol.176.8.5023
  36. Hagemann, T., Lawrence, T., McNeish, I., Charles, K.A., Kulbe, H., Thompson, R.G., Robinson, S.C., and Balkwill, F.R. (2008). "Re-educating" tumor-associated macrophages by targeting NFkappaB. J. Exp. Med. 205, 1261-1268. https://doi.org/10.1084/jem.20080108
  37. Hagemann, T., Biswas, S.K., Lawrence, T., Sica, A., and Lewis, C.E. (2009). Regulation of macrophage function in tumors: the multifaceted role of NF-kappaB. Blood 113, 3139-3146. https://doi.org/10.1182/blood-2008-12-172825
  38. Hamid, O., Robert, C., Daud, A., Hodi, F.S., Hwu, W.J., Kefford, R., Wolchok, J.D., Hersey, P., Joseph, R.W., Weber, J.S., et al. (2013). Safety and tumor responses with lambrolizumab (anti- PD-1) in melanoma. N Engl. J. Med. 369, 134-144. https://doi.org/10.1056/NEJMoa1305133
  39. Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  40. Hayakawa, Y., Maeda, S., Nakagawa, H., Hikiba, Y., Shibata, W., Sakamoto, K., Yanai, A., Hirata, Y., Ogura, K., Muto, S., et al. (2009). Effectiveness of IkappaB kinase inhibitors in murine colitis- associated tumorigenesis. J. Gastroenterol. 44, 935-943. https://doi.org/10.1007/s00535-009-0098-7
  41. Heusinkveld, M., and van der Burg, S.H. (2011). Identification and manipulation of tumor associated macrophages in human cancers. J. Transl. Med. 9, 216. https://doi.org/10.1186/1479-5876-9-216
  42. Heusinkveld, M., de Vos van Steenwijk, P.J., Goedemans, R., Ramwadhdoebe, T.H., Gorter, A., Welters, M.J., van Hall, T., and van der Burg, S.H. (2011). M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J. Immunol. 187, 1157-1165. https://doi.org/10.4049/jimmunol.1100889
  43. Hiraga, T., Williams, P.J., Ueda, A., Tamura, D., and Yoneda, T. (2004). Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin. Cancer Res. 10, 4559-4567. https://doi.org/10.1158/1078-0432.CCR-03-0325
  44. Hodi, F.S., O'Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J.C., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N Engl. J. Med. 363, 711-723. https://doi.org/10.1056/NEJMoa1003466
  45. Huang, S., Van Arsdall, M., Tedjarati, S., McCarty, M., Wu, W., Langley, R., and Fidler, I.J. (2002). Contributions of stromal metalloproteinase- 9 to angiogenesis and growth of human ovarian carcinoma in mice. J. Natl. Cancer Inst. 94, 1134-1142. https://doi.org/10.1093/jnci/94.15.1134
  46. Hume, D.A., and MacDonald, K.P. (2011). Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119, 1810-1820.
  47. Hwu, P. (2010). Treating cancer by targeting the immune system. N Engl. J. Med. 363, 779-781. https://doi.org/10.1056/NEJMe1006416
  48. Imtiyaz, H.Z., Williams, E.P., Hickey, M.M., Patel, S.A., Durham, A.C., Yuan, L.J., Hammond, R., Gimotty, P.A., Keith, B., and Simon, M.C. (2010). Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Invest. 120, 2699-2714. https://doi.org/10.1172/JCI39506
  49. Ji, R.C. (2011). Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell. Mol. Life Sci. 69, 897-914.
  50. Joyce, J.A., and Pollard, J.W. (2009). Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239-252. https://doi.org/10.1038/nrc2618
  51. Jubb, A.M., Soilleux, E.J., Turley, H., Steers, G., Parker, A., Low, I., Blades, J., Li, J.L., Allen, P., Leek, R., et al. (2010). Expression of vascular notch ligand delta-like 4 and inflammatory markers in breast cancer. Am. J. Pathol. 176, 2019-2028. https://doi.org/10.2353/ajpath.2010.090908
  52. Kakinoki, K., Nakamoto, Y., Kagaya, T., Tsuchiyama, T., Sakai, Y., Nakahama, T., Mukaida, N., and Kaneko, S. (2010). Prevention of intrahepatic metastasis of liver cancer by suicide gene therapy and chemokine ligand 2/monocyte chemoattractant protein-1 delivery in mice. J. Gene Med. 12, 1002-1013. https://doi.org/10.1002/jgm.1528
  53. Kambayashi, T., Alexander, H.R., Fong, M., and Strassmann, G. (1995). Potential involvement of IL-10 in suppressing tumorassociated macrophages. Colon-26-derived prostaglandin E2 inhibits TNF-alpha release via a mechanism involving IL-10. J. Immunol. 154, 3383-3390.
  54. Kim, J., Modlin, R.L., Moy, R.L., Dubinett, S.M., McHugh, T., Nickoloff, B.J., and Uyemura, K. (1995). IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response. J. Immunol. 155, 2240-2247.
  55. Kim, S., Takahashi, H., Lin, W.W., Descargues, P., Grivennikov, S., Kim, Y., Luo, J.L., and Karin, M. (2009). Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102-106. https://doi.org/10.1038/nature07623
  56. Knowles, H.J., and Harris, A.L. (2007). Macrophages and the hypoxic tumour microenvironment. Front Biosci. 12, 4298-4314. https://doi.org/10.2741/2389
  57. Kuo, M.L., Duncavage, E.J., Mathew, R., den Besten, W., Pei, D., Naeve, D., Yamamoto, T., Cheng, C., Sherr, C.J., and Roussel, M.F. (2003). Arf induces p53-dependent and -independent antiproliferative genes. Cancer Res. 63, 1046-1053.
  58. Kurahara, H., Takao, S., Maemura, K., Mataki, Y., Kuwahata, T., Maeda, K., Sakoda, M., Iino, S., Ishigami, S., Ueno, S., et al. (2012). M2-polarized tumor-associated macrophage infiltration of regional lymph nodes is associated with nodal lymphangiogenesis and occult nodal involvement in pN0 pancreatic cancer. Pancreas 42, 155-159.
  59. Lamagna, C., Aurrand-Lions, M., and Imhof, B.A. (2006). Dual role of macrophages in tumor growth and angiogenesis. J. Leukoc. Biol. 80, 705-713. https://doi.org/10.1189/jlb.1105656
  60. Lang, R., Patel, D., Morris, J.J., Rutschman, R.L., and Murray, P.J. (2002). Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 169, 2253-2263. https://doi.org/10.4049/jimmunol.169.5.2253
  61. Lawrence, T., Gilroy, D.W., Colville-Nash, P.R., and Willoughby, D.A. (2001). Possible new role for NF-kappaB in the resolution of inflammation. Nat. Med. 7, 1291-1297. https://doi.org/10.1038/nm1201-1291
  62. Leavy, O. (2011). Immunotherapy: Stopping monocytes in their tracks. Nat. Rev. Immunol. 11, 715. https://doi.org/10.1038/nri3096
  63. Leek, R.D., Lewis, C.E., Whitehouse, R., Greenall, M., Clarke, J., and Harris, A.L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56, 4625-4629.
  64. Leek, R.D., Hunt, N.C., Landers, R.J., Lewis, C.E., Royds, J.A., and Harris, A.L. (2000). Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J. Pathol. 190, 430-436. https://doi.org/10.1002/(SICI)1096-9896(200003)190:4<430::AID-PATH538>3.0.CO;2-6
  65. Leek, R.D., Talks, K.L., Pezzella, F., Turley, H., Campo, L., Brown, N.S., Bicknell, R., Taylor, M., Gatter, K.C., and Harris, A.L. (2002). Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res. 62, 1326-1329.
  66. Leuschner, F., Dutta, P., Gorbatov, R., Novobrantseva, T.I., Donahoe, J.S., Courties, G., Lee, K.M., Kim, J.I., Markmann, J.F., Marinelli, B., et al. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005-1010. https://doi.org/10.1038/nbt.1989
  67. Luckman, S.P., Hughes, D.E., Coxon, F.P., Graham, R., Russell, G., and Rogers, M.J. (1998). Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J. Bone Miner Res. 13, 581-589. https://doi.org/10.1359/jbmr.1998.13.4.581
  68. Luedde, T., Beraza, N., Kotsikoris, V., van Loo, G., Nenci, A., De Vos, R., Roskams, T., Trautwein, C., and Pasparakis, M. (2007). Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119-132. https://doi.org/10.1016/j.ccr.2006.12.016
  69. MacDonald, K.P., Palmer, J.S., Cronau, S., Seppanen, E., Olver, S., Raffelt, N.C., Kuns, R., Pettit, A.R., Clouston, A., Wainwright, B., et al. (2010). An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissueand tumor-associated macrophages but does not inhibit inflammation. Blood 116, 3955-3963. https://doi.org/10.1182/blood-2010-02-266296
  70. Maeda, S., Kamata, H., Luo, J.L., Leffert, H., and Karin, M. (2005). IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977-990. https://doi.org/10.1016/j.cell.2005.04.014
  71. Mahmoud, S.M., Lee, A.H., Paish, E.C., Macmillan, R.D., Ellis, I.O., and Green, A.R. (2011). Tumour-infiltrating macrophages and clinical outcome in breast cancer. J. Clin. Pathol. 65, 159-163.
  72. Mantovani, A. (2009). Cancer: inflaming metastasis. Nature 457, 36-37.
  73. Mantovani, A., and Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231-237. https://doi.org/10.1016/j.coi.2010.01.009
  74. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549-555. https://doi.org/10.1016/S1471-4906(02)02302-5
  75. Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer- related inflammation. Nature 454, 436-444. https://doi.org/10.1038/nature07205
  76. Martelli, F., Hamilton, T., Silver, D.P., Sharpless, N.E., Bardeesy, N., Rokas, M., DePinho, R.A., Livingston, D.M., and Grossman, S.R. (2001). p19ARF targets certain E2F species for degradation. Proc. Natl. Acad. Sci. USA 98, 4455-4460. https://doi.org/10.1073/pnas.081061398
  77. Martinez, F.O., Helming, L., and Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451-483. https://doi.org/10.1146/annurev.immunol.021908.132532
  78. Medrek, C., Ponten, F., Jirstrom, K., and Leandersson, K. (2012). The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12, 306. https://doi.org/10.1186/1471-2407-12-306
  79. Monkkonen, H., Auriola, S., Lehenkari, P., Kellinsalmi, M., Hassinen, I.E., Vepsalainen, J., and Monkkonen, J. (2006). A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br. J. Pharmacol. 147, 437-445. https://doi.org/10.1038/sj.bjp.0706628
  80. Moore, K.W., de Waal Malefyt, R., Coffman, R.L., and O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
  81. Moreau, M.F., Guillet, C., Massin, P., Chevalier, S., Gascan, H., Basle, M.F., and Chappard, D. (2007). Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem. Pharmacol. 73, 718-723. https://doi.org/10.1016/j.bcp.2006.09.031
  82. Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., Mack, M., Pipeleers, D., In't Veld, P., De Baetselier, P., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 70, 5728-5739. https://doi.org/10.1158/0008-5472.CAN-09-4672
  83. Mukhtar, R.A., Moore, A.P., Nseyo, O., Baehner, F.L., Au, A., Moore, D.H., Twomey, P., Campbell, M.J., and Esserman, L.J. (2011a). Elevated PCNA+ tumor-associated macrophages in breast cancer are associated with early recurrence and non-Caucasian ethnicity. Breast Cancer Res. Treat 130, 635-644. https://doi.org/10.1007/s10549-011-1646-4
  84. Mundy, G.R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584-593. https://doi.org/10.1038/nrc867
  85. Murdoch, C., and Lewis, C.E. (2005). Macrophage migration and gene expression in response to tumor hypoxia. Int. J. Cancer 117, 701-708. https://doi.org/10.1002/ijc.21422
  86. Murdoch, C., Giannoudis, A., and Lewis, C.E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224-2234. https://doi.org/10.1182/blood-2004-03-1109
  87. Murdoch, C., Muthana, M., Coffelt, S.B., and Lewis, C.E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618-631. https://doi.org/10.1038/nrc2444
  88. Murray, P.J., and Wynn, T.A. (2011). Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol. 89, 557-563. https://doi.org/10.1189/jlb.0710409
  89. Naugler, W.E., Sakurai, T., Kim, S., Maeda, S., Kim, K., Elsharkawy, A.M., and Karin, M. (2007). Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121-124. https://doi.org/10.1126/science.1140485
  90. Obeid, E., Nanda, R., Fu, Y.X., and Olopade, O.I. (2013). The role of tumor-associated macrophages in breast cancer progression (review). Int. J. Oncol. 43, 5-12. https://doi.org/10.3892/ijo.2013.1938
  91. Pikarsky, E., Porat, R.M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E., and Ben-Neriah, Y. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461-466. https://doi.org/10.1038/nature02924
  92. Pollard, J.W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71-78. https://doi.org/10.1038/nrc1256
  93. Pollard, J.W. (2009). Trophic macrophages in development and disease. Nat. Rev. Immunol. 9, 259-270. https://doi.org/10.1038/nri2528
  94. Pomerantz, J., Schreiber-Agus, N., Liegeois, N.J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H.W., et al. (1998). The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92, 713-723. https://doi.org/10.1016/S0092-8674(00)81400-2
  95. Porta, C., Riboldi, E., and Sica, A. (2011). Mechanisms linking pathogens- associated inflammation and cancer. Cancer Lett. 305, 250-262. https://doi.org/10.1016/j.canlet.2010.10.012
  96. Pylayeva-Gupta, Y., Lee, K.E., Hajdu, C.H., Miller, G., and Bar-Sagi, D. (2012). Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836-847. https://doi.org/10.1016/j.ccr.2012.04.024
  97. Qi, Y., Gregory, M.A., Li, Z., Brousal, J.P., West, K., and Hann, S.R. (2004). p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431, 712-717. https://doi.org/10.1038/nature02958
  98. Qing, W., Fang, W.Y., Ye, L., Shen, L.Y., Zhang, X.F., Fei, X.C., Chen, X., Wang, W.Q., Li, X.Y., Xiao, J.C., et al. (2012). Density of tumor-associated macrophages correlates with lymph node metastasis in papillary thyroid carcinoma. Thyroid 22, 905-910. https://doi.org/10.1089/thy.2011.0452
  99. Raica, M., Cimpean, A.M., and Ribatti, D. (2009). Angiogenesis in pre-malignant conditions. Eur. J. Cancer 45, 1924-1934. https://doi.org/10.1016/j.ejca.2009.04.007
  100. Rankin, E.B., and Giaccia, A.J. (2008). The role of hypoxiainducible factors in tumorigenesis. Cell Death Differ 15, 678-685. https://doi.org/10.1038/cdd.2008.21
  101. Restifo, N.P., Dudley, M.E., and Rosenberg, S.A. (2012). Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269-281. https://doi.org/10.1038/nri3191
  102. Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A.S., Nizet, V., Johnson, R.S., Haddad, G.G., and Karin, M. (2008). NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453, 807-811. https://doi.org/10.1038/nature06905
  103. Rodan, G.A., and Fleisch, H.A. (1996). Bisphosphonates: mechanisms of action. J. Clin. Invest. 97, 2692-2696. https://doi.org/10.1172/JCI118722
  104. Rolny, C., Mazzone, M., Tugues, S., Laoui, D., Johansson, I., Coulon, C., Squadrito, M.L., Segura, I., Li, X., Knevels, E., et al. (2011). HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31-44. https://doi.org/10.1016/j.ccr.2010.11.009
  105. Senaratne, S.G., Pirianov, G., Mansi, J.L., Arnett, T.R., and Colston, K.W. (2000). Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J. Cancer 82, 1459-1468. https://doi.org/10.1054/bjoc.1999.1131
  106. Senaratne, S.G., Mansi, J.L., and Colston, K.W. (2002). The bisphosphonate zoledronic acid impairs Ras membrane [correction of impairs membrane] localisation and induces cytochrome c release in breast cancer cells. Br J. Cancer 86, 1479-1486. https://doi.org/10.1038/sj.bjc.6600297
  107. Shantsila, E., Wrigley, B., Tapp, L., Apostolakis, S., Montoro-Garcia, S., Drayson, M.T., and Lip, G.Y. (2011). Immunophenotypic characterization of human monocyte subsets: possible implications for cardiovascular disease pathophysiology. J. Thromb. Haemost. 9, 1056-1066. https://doi.org/10.1111/j.1538-7836.2011.04244.x
  108. Sharma, P., Wagner, K., Wolchok, J.D., and Allison, J.P. (2011). Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat. Rev. Cancer 11, 805-812. https://doi.org/10.1038/nrc3153
  109. Sharpless, N.E. (2005). INK4a/ARF: a multifunctional tumor suppressor locus. Mutat. Res. 576, 22-38. https://doi.org/10.1016/j.mrfmmm.2004.08.021
  110. Shen, Z., Seppanen, H., Vainionpaa, S., Ye, Y., Wang, S., Mustonen, H., and Puolakkainen, P. (2012). IL10, IL11, IL18 are differently expressed in CD14+ TAMs and play different role in regulating the invasion of gastric cancer cells under hypoxia. Cytokine 59, 352-357. https://doi.org/10.1016/j.cyto.2012.04.033
  111. Shirabe, K., Mano, Y., Muto, J., Matono, R., Motomura, T., Toshima, T., Takeishi, K., Uchiyama, H., Yoshizumi, T., Taketomi, A., et al. (2011). Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg. Today 42, 1-7.
  112. Sica, A., Saccani, A., Bottazzi, B., Polentarutti, N., Vecchi, A., van Damme, J., and Mantovani, A. (2000). Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J. Immunol. 164, 762-767. https://doi.org/10.4049/jimmunol.164.2.762
  113. Siveen, K.S., and Kuttan, G. (2009). Role of macrophages in tumour progression. Immunol. Lett. 123, 97-102. https://doi.org/10.1016/j.imlet.2009.02.011
  114. Steele, R.J., Brown M., and Eremin O. (1985). Characterisation of macrophages infiltrating human mammary carcinomas. Br. J. Cancer 51, 135-138. https://doi.org/10.1038/bjc.1985.20
  115. Stern, P.H. (2007). Antiresorptive agents and osteoclast apoptosis. J. Cell. Biochem. 101, 1087-1096. https://doi.org/10.1002/jcb.21311
  116. Stetler-Stevenson, W.G., and Yu, A.E. (2001). Proteases in invasion: matrix metalloproteinases. Semin. Cancer Biol. 11, 143-152. https://doi.org/10.1006/scbi.2000.0365
  117. Stott, F.J., Bates, S., James, M.C., McConnell, B.B., Starborg, M., Brookes, S., Palmero, I., Ryan, K., Hara, E., Vousden, K.H., et al. (1998). The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001-5014. https://doi.org/10.1093/emboj/17.17.5001
  118. Stresing, V., Daubine, F., Benzaid, I., Monkkonen, H., and Clezardin, P. (2007). Bisphosphonates in cancer therapy. Cancer Lett. 257, 16-35. https://doi.org/10.1016/j.canlet.2007.07.007
  119. Sugimoto, M., Kuo, M.L., Roussel, M.F., and Sherr, C.J. (2003). Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol. Cell 11, 415-424. https://doi.org/10.1016/S1097-2765(03)00057-1
  120. Swain, S.M., and Arezzo, J.C. (2008). Neuropathy associated with microtubule inhibitors: diagnosis, incidence, and management. Clin. Adv. Hematol. Oncol. 6, 455-467.
  121. Tsuchiyama, T., Nakamoto, Y., Sakai, Y., Mukaida, N., and Kaneko, S. (2008). Optimal amount of monocyte chemoattractant protein- 1 enhances antitumor effects of suicide gene therapy against hepatocellular carcinoma by M1 macrophage activation. Cancer Sci. 99, 2075-2082. https://doi.org/10.1111/j.1349-7006.2008.00951.x
  122. Tsutsui, S., Yasuda, K., Suzuki, K., Tahara, K., Higashi, H., and Era, S. (2005). Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol. Rep. 14, 425-431.
  123. van der Pluijm, G., Vloedgraven, H., van Beek, E., van der Wee- Pals, L., Lowik, C., and Papapoulos, S. (1996). Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J. Clin. Invest. 98, 698-705. https://doi.org/10.1172/JCI118841
  124. Vicari, A.P., Chiodoni, C., Vaure, C., Ait-Yahia, S., Dercamp, C., Matsos, F., Reynard, O., Taverne, C., Merle, P., Colombo, M.P., et al. (2002). Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J. Exp. Med. 196, 541-549. https://doi.org/10.1084/jem.20020732
  125. Vonderheide, R.H., and Glennie, M.J. (2013). Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 19, 1035-1043. https://doi.org/10.1158/1078-0432.CCR-12-2064
  126. Wang, F.Q., So, J., Reierstad, S., and Fishman, D.A. (2005). Matrilysin (MMP-7) promotes invasion of ovarian cancer cells by activation of progelatinase. Int. J. Cancer 114, 19-31. https://doi.org/10.1002/ijc.20697
  127. Winter, M.C., and Coleman, R.E. (2009). Bisphosphonates in breast cancer: teaching an old dog new tricks. Curr. Opin. Oncol. 21, 499-506. https://doi.org/10.1097/CCO.0b013e328331c794
  128. Wolchok, J.D., Kluger, H., Callahan, M.K., Postow, M.A., Rizvi, N.A., Lesokhin, A.M., Segal, N.H., Ariyan, C.E., Gordon, R.A., Reed, K., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. N Engl. J. Med. 369, 122-133. https://doi.org/10.1056/NEJMoa1302369
  129. Wu, H., Xu, J.B., He, Y.L., Peng, J.J., Zhang, X.H., Chen, C.Q., Li, W., and Cai, S.R. (2012). Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J. Surg. Oncol. 106, 462-468. https://doi.org/10.1002/jso.23110
  130. Ye, X.Z., Xu, S.L., Xin, Y.H., Yu, S.C., Ping, Y.F., Chen, L., Xiao, H.L., Wang, B., Yi, L., Wang, Q.L., et al. (2012). Tumorassociated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J. Immunol. 189, 444-453. https://doi.org/10.4049/jimmunol.1103248
  131. Zhao, J.J., Pan, K., Wang, W., Chen, J.G., Wu, Y.H., Lv, L., Li, J.J., Chen, Y.B., Wang, D.D., Pan, Q.Z., et al. (2012a). The prognostic value of tumor-infiltrating neutrophils in gastric adenocarcinoma after resection. PLoS One 7, e33655. https://doi.org/10.1371/journal.pone.0033655
  132. Zhao, Q., Kuang, D.M., Wu, Y., Xiao, X., Li, X.F., Li, T.J., and Zheng, L. (2012b). Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J. Immunol. 188, 1117-1124. https://doi.org/10.4049/jimmunol.1100164

Cited by

  1. Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy vol.253, 2017, https://doi.org/10.1016/j.jconrel.2017.03.013
  2. Cell-Based IL-15:IL-15Rα Secreting Vaccine as an Effective Therapy for CT26 Colon Cancer in Mice vol.42, pp.12, 2015, https://doi.org/10.14348/molcells.2019.0188
  3. lncRNA-Xist/miR-101-3p/KLF6/C/EBPα axis promotes TAM polarization to regulate cancer cell proliferation and migration vol.23, pp.None, 2015, https://doi.org/10.1016/j.omtn.2020.12.005