• 제목/요약/키워드: immune microenvironment

검색결과 102건 처리시간 0.023초

Perspectives on immune checkpoint ligands: expression, regulation, and clinical implications

  • Moon, Jihyun;Oh, Yoo Min;Ha, Sang-Jun
    • BMB Reports
    • /
    • 제54권8호
    • /
    • pp.403-412
    • /
    • 2021
  • In the tumor microenvironment, immune checkpoint ligands (ICLs) must be expressed in order to trigger the inhibitory signal via immune checkpoint receptors (ICRs). Although ICL expression frequently occurs in a manner intrinsic to tumor cells, extrinsic factors derived from the tumor microenvironment can fine-tune ICL expression by tumor cells or prompt non-tumor cells, including immune cells. Considering the extensive interaction between T cells and other immune cells within the tumor microenvironment, ICL expression on immune cells can be as significant as that of ICLs on tumor cells in promoting antitumor immune responses. Here, we introduce various regulators known to induce or suppress ICL expression in either tumor cells or immune cells, and concise mechanisms relevant to their induction. Finally, we focus on the clinical significance of understanding the mechanisms of ICLs for an optimized immunotherapy for individual cancer patients.

Single-cell RNA-Seq unveils tumor microenvironment

  • Lee, Hae-Ock;Park, Woong-Yang
    • BMB Reports
    • /
    • 제50권6호
    • /
    • pp.283-284
    • /
    • 2017
  • Single cell transcriptome analysis is a powerful tool for defining cell types or sub-populations within a heterogeneous bulk population. Tumor-associated microenvironment is a complex ecosystem consisting of numerous cell types that support tumor growth, angiogenesis, immune evasion, and metastasis. With the success of checkpoint inhibitors targeting the immune cell compartment, tumor microenvironment is emerging as a potential anti-cancer target, and understanding it has become an imminent subject in cancer biology.

Exosomal Communication Between the Tumor Microenvironment and Innate Immunity and Its Therapeutic Application

  • Hyunseok Kong;Sang Bum Kim
    • IMMUNE NETWORK
    • /
    • 제22권5호
    • /
    • pp.38.1-38.24
    • /
    • 2022
  • Exosomes, which are well-known nanoscale extracellular vesicles, are multifunctional biomaterials derived from endosomes and perform various functions. The exosome is a critical material in cell-cell communication. In addition, it regulates the pathophysiological conditions of the tumor microenvironment in particular. In the tumor microenvironment, exosomes play a controversial role in supporting or killing cancer by conveying biomaterials derived from parent cells. Innate immunity is a crucial component of the host defense mechanism, as it prevents foreign substances, such as viruses and other microbes and tumorigenesis from invading the body. Early in the tumorigenesis process, the innate immunity explicitly recognizes the tumor via Ags and educates the adaptive immunity to eliminate it. Recent studies have revealed that exosomes regulate immunity in the tumor microenvironment. Tumor-derived exosomes regulate immunity against tumor progression and metastasis. Furthermore, tumor-derived exosomes regulate polarization, differentiation, proliferation, and activation of innate immune cells. Exosomes produced from innate immune cells can inhibit or support tumor progression and metastasis via immune cell activation and direct cancer inhibition. In this study, we investigated current knowledge regarding the communication between tumor-derived exosomes and innate immune cell-derived exosomes (from macrophages, dendritic cells, NK cells, and neutrophils) in the tumor microenvironment. In addition, we discussed the potential development of exosomal immunotherapy using native or engineered exosomes against cancer.

Enriching CCL3 in the Tumor Microenvironment Facilitates T cell Responses and Improves the Efficacy of Anti-PD-1 Therapy

  • Tae Gun Kang;Hyo Jin Park;Jihyun Moon;June Hyung Lee;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • 제21권3호
    • /
    • pp.23.1-23.16
    • /
    • 2021
  • Chemokines are key factors that influence the migration and maintenance of relevant immune cells into an infected tissue or a tumor microenvironment. Therefore, it is believed that the controlled administration of chemokines in the tumor microenvironment may be an effective immunotherapy against cancer. Previous studies have shown that CCL3, also known as macrophage inflammatory protein 1-alpha, facilitates the recruitment of dendritic cells (DCs) for the presentation of tumor Ags and promotes T cell activation. Here, we investigated the role of CCL3 in regulating the tumor microenvironment using a syngeneic mouse tumor model. We observed that MC38 tumors overexpressing CCL3 (CCL3-OE) showed rapid regression compared with the wild type MC38 tumors. Additionally, these CCL3-OE tumors showed an increase in the proliferative and functional tumor-infiltrating T cells. Furthermore, PD-1 immune checkpoint blockade accelerated tumor regression in the CCL3-OE tumor microenvironment. Next, we generated a modified CCL3 protein for pre-clinical use by fusing recombinant CCL3 (rCCL3) with a non-cytolytic hybrid Fc (HyFc). Administering a controlled dose of rCCL3-HyFc via subcutaneous injections near tumors was effective in tumor regression and improved survival along with activated myeloid cells and augmented T cell responses. Furthermore, combination therapy of rCCL3-HyFc with PD-1 blockade exhibited prominent effect to tumor regression. Collectively, our findings demonstrate that appropriate concentrations of CCL3 in the tumor microenvironment would be an effective adjuvant to promote anti-tumor immune responses, and suggest that administering a long-lasting form of CCL3 in combination with PD-1 blockers can have clinical applications in cancer immunotherapy.

Tumor Immune Microenvironment as a New Therapeutic Target for Hepatocellular Carcinoma Development

  • Eunjeong Kim
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권4호
    • /
    • pp.167-174
    • /
    • 2023
  • Development of hepatocellular carcinoma (HCC) is driven by a multistep and long-term process. Because current therapeutic strategies are limited for HCC patients, there are increasing demands for understanding of immunotherapy, which has made technological and conceptual innovations in the treatment of cancer. Here, I discuss HCC immunotherapy in the view of interaction between liver resident cells and immune cells.

Highlighted STAT3 as a potential drug target for cancer therapy

  • Lee, Haeri;Jeong, Ae Jin;Ye, Sang-Kyu
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.415-423
    • /
    • 2019
  • Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that regulates cell proliferation, differentiation, apoptosis, angiogenesis, inflammation and immune responses. Aberrant STAT3 activation triggers tumor progression through oncogenic gene expression in numerous human cancers, leading to promote tumor malignancy. On the contrary, STAT3 activation in immune cells cause elevation of immunosuppressive factors. Accumulating evidence suggests that the tumor microenvironment closely interacts with the STAT3 signaling pathway. So, targeting STAT3 may improve tumor progression, and anti-cancer immune response. In this review, we summarized the role of STAT3 in cancer and the tumor microenvironment, and present inhibitors of STAT3 signaling cascades.

Emerging role of RUNX3 in the regulation of tumor microenvironment

  • Manandhar, Sarala;Lee, You Mie
    • BMB Reports
    • /
    • 제51권4호
    • /
    • pp.174-181
    • /
    • 2018
  • A number of genes have been therapeutically targeted to relieve cancer, but cancer relapse is still a growing issue. The concept that the surrounding tumor environment is critical for the progression of cancer may foster an answer to the issue of cancer malignancy. Runt domain transcription factors (RUNX1, 2, and 3) are evolutionarily conserved and have been intensively studied for their roles in normal development and pathological conditions. During tumor growth, a hypoxic microenvironment and infiltration of the tumor by immune cells are common phenomena. In this review, we briefly introduce the consequences of hypoxia and immune cell infiltration into the tumor microenvironment with a focus on RUNX3 as a critical regulator. Furthermore, based on our current knowledge of the functional role of RUNX3 in hypoxia and immune cell maintenance, a probable therapeutic intervention is suggested for the effective management of tumor growth and malignancy.

Regulatory T Cells in Tumor Microenvironment and Approach for Anticancer Immunotherapy

  • Jung-Ho Kim;Beom Seok Kim;Sang-Kyou Lee
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.4.1-4.17
    • /
    • 2020
  • Tregs have a role in immunological tolerance and immune homeostasis by suppressing immune reactions, and its therapeutic potential is critical in autoimmune diseases and cancers. There have been multiple studies conducted on Tregs because of their roles in immune suppression and therapeutic potential. In tumor immunity, Tregs can promote the development and progression of tumors by preventing effective anti-tumor immune responses in tumor-bearing hosts. High infiltration of Tregs into tumor tissue results in poor survival in various types of cancer patients. Identifying factors specifically expressed in Tregs that affect the maintenance of stability and function of Tregs is important for understanding cancer pathogenesis and identifying therapeutic targets. Thus, manipulation of Tregs is a promising anticancer strategy, but finding markers for Treg-specific depletion and controlling these cells require fine-tuning and further research. Here, we discuss the role of Tregs in cancer and the development of Treg-targeted therapies to promote cancer immunotherapy.

Epstein-Barr Virus-Associated Gastric Carcinoma and Specific Features of the Accompanying Immune Response

  • Cho, Junhun;Kang, Myung-Soo;Kim, Kyoung-Mee
    • Journal of Gastric Cancer
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is one of the four subtypes of gastric carcinoma (GC), as defined by the novel classification recently proposed by The Cancer Genome Atlas. EBVaGC has several clinicopathological features such as longer survival and higher frequency of lymphoepithelioma-like carcinoma (LELC) and carcinoma with Crohn's disease-like lymphoid reaction that distinguish it from EBV-negative GC. The intensity and pattern of host cellular immune response in GC have been found to significantly correlate with the prognosis of patients with GC, suggesting that immune reaction and tumor microenvironment have critical roles in the progression of GC, and in particular, EBVaGC. Here, we reviewed the cellular and molecular mechanisms underlying prominent immune reactions in patients with EBVaGC. In EBVaGC, deregulation of the expression of immune response-related genes promotes marked intra-or peritumoral immune cell infiltration. The expression of programmed death receptor-ligand 1 is known to be increased in EBVaGC, and therefore, it has been proposed as a favorable prognostic factor for patients with EBVaGC, albeit some data supporting this claim are controversial. Overall, the underlying mechanisms and clinical significance of the host cellular immune response in patients with EBVaGC have not been thoroughly elucidated. Therefore, further research is necessary to better understand the role of tumor microenvironment in EBVaGC.

Construction of a Novel Mitochondria-Associated Gene Model for Assessing ESCC Immune Microenvironment and Predicting Survival

  • Xiu Wang;Zhenhu Zhang;Yamin Shi;Wenjuan Zhang;Chongyi Su;Dong Wang
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1164-1177
    • /
    • 2024
  • Esophageal squamous cell carcinoma (ESCC) is among the most common malignant tumors of the digestive tract, with the sixth highest fatality rate worldwide. The ESCC-related dataset, GSE20347, was downloaded from the Gene Expression Omnibus (GEO) database, and weighted gene co-expression network analysis was performed to identify genes that are highly correlated with ESCC. A total of 91 transcriptome expression profiles and their corresponding clinical information were obtained from The Cancer Genome Atlas database. A mitochondria-associated risk (MAR) model was constructed using the least absolute shrinkage and selection operator Cox regression analysis and validated using GSE161533. The tumor microenvironment and drug sensitivity were explored using the MAR model. Finally, in vitro experiments were performed to analyze the effects of hub genes on the proliferation and invasion abilities of ESCC cells. To confirm the predictive ability of the MAR model, we constructed a prognostic model and assessed its predictive accuracy. The MAR model revealed substantial differences in immune infiltration and tumor microenvironment characteristics between high- and low-risk populations and a substantial correlation between the risk scores and some common immunological checkpoints. AZD1332 and AZD7762 were more effective for patients in the low-risk group, whereas Entinostat, Nilotinib, Ruxolutinib, and Wnt.c59 were more effective for patients in the high-risk group. Knockdown of TYMS significantly inhibited the proliferation and invasive ability of ESCC cells in vitro. Overall, our MAR model provides stable and reliable results and may be used as a prognostic biomarker for personalized treatment of patients with ESCC.