• Title/Summary/Keyword: immune cytokine

Search Result 1,033, Processing Time 0.02 seconds

Effect of Baicalin on the Ex vivo Production of Cytokines in Pristane-Induced Lupus Mice (프리스탄 유도한 루푸스 생쥐에서 사이토카인 Ex vivo 생산에 미치는 Baicalin의 효과)

  • Chae, Byeong Suk
    • YAKHAK HOEJI
    • /
    • v.60 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Systemic lupus erythematosus (SLE) is characterized by dysregulatory production of proinflammatory cytokines and helper T (Th) cytokine-dependent autoantibody production. This study aims to investigate the protective effect of baicalin on the dysregulatory production of proinflammatory cytokines and Th cytokines in pristane-induced lupus mice. Mice were received i.p. a single injection of 0.5 ml of pristane, and then, later about 3 months, were used as a pristane-induced lupus model. The pristane-induced lupus mice were administrated orally with baicalin 50 mg/kg once in a day for 10 days. Immune cells obtained from the pristane-primed lupus control group (lupus control) and baicalin-treated pristaneprimed lupus mouse group (BAC lupus) were cultured for 24 h or 36 h with/without mitogens. These results demonstrated that LPS-induced production of macrophage and splenic TNF-${\alpha}$ and Con A-induced production of thymic IFN-${\gamma}$ were attenuated in BAC lupus compared to lupus control, while LPS-stimulated production of macrophage IL-10, Con A-stimulated production of splenic IL-10 and, $PGE_2$-reduced production of splenic IFN-${\gamma}$ enhanced. Therefore, these findings suggest that baicalin may protect from autoimmunity and disease activity in lupus via modulatory effect of proinflammatory cytokine overproduction and Th cytokine imbalance.

Alteration of Inflammatory Cytokines by Volatile Organic Compounds in T Lymphocytes

  • Lee, Ji-Sook;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.39-45
    • /
    • 2011
  • In the present study, we investigated whether volatile organic compounds induce inflammatory response in human T lymphocytes by evaluating the alteration of inflammatory cytokines. Volatile organic compounds such as formaldehyde, o-xylene, benzene, and hydroquinone have no cytotoxic effects on Jurkat T cells at a high concentration of 50 ${\mu}M$ for 48 h. IL-2, IL-4, IL-13, TNF-${\alpha}$ and IFN-${\gamma}$ were increased after the treatment with volatile organic compounds, although alteration of cytokines is different among volatile organic compounds. LPS as a positive control increased the secretion of IL-2, IL-4, IL-13, TNF-${\alpha}$ and IFN-${\gamma}$. MCP-1 and CCL17 (thymus and activation-regulated chemokine, TARC) were weakly increased after the treatment with volatile organic compounds but the amount of the increased cytokine was below 20 pg/ml. These results suggest that the measurement of cytokine in Jurkat T cells may be used as a useful method for evaluating the toxicity of volatile organic compounds in immune response.

Effects of a Corn Extract on Mouse Splenocyte and Cytokine Production by Peritoneal Macrophages (4주 동안의 옥수수 추출물 투여가 마우스 비장세포와 대식세포 생성에 미치는 영향)

  • Ryu, Hye-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • This study was performed to investigate the in vitro effect of a corn water extract on immune function. Splenocyte proliferation was determined by the MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl terazolium bromide) assay after preparing asingle cell suspension. Production of macrophage-secreted interleukin(IL)-$1{\beta}$, IL-6, and interferon(IFN)-${\gamma}$, was detected by ELISA using a cytokine assay kit. After a 48-hr incubation with mitogens(ConA or lipopolysaccharide), mice splenocyte proliferation increased with the addition of a corn water extract supplement at 10, 50, 100, 250, 500, or $1,000\;{\mu}g/m\ell$. Production of IL-$1{\beta}$, IL-6, and IFN-${\gamma}$ increased in treatments supplemented with the corn water extract. In an in vitro study, splenocyte proliferation increased when $50\sim1,000\;{\mu}\ell/m\ell$ corn water extract was added. In an ex vivo experiment, the highest production of cytokines by activated peritoneal macrophages was observed in mice orally administered 500 mg/kg body weight/day.

Cell-based Immunotherapy for Colorectal Cancer with Cytokine-induced Killer Cells

  • Ji Sung Kim;Yong Guk Kim;Eun Jae Park;Boyeong Kim;Hong Kyung Lee;Jin Tae Hong;Youngsoo Kim;Sang-Bae Han
    • IMMUNE NETWORK
    • /
    • v.16 no.2
    • /
    • pp.99-108
    • /
    • 2016
  • Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer.

IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans

  • Tran, Vuvi G.;Cho, Hong R.;Kwon, Byungsuk
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms.

Effect of Bifidobacterium Cell Fractions on IL-6 Production in RAW 264.7 Macrophage Cells

  • Lee, Byung-Hee;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.740-744
    • /
    • 2005
  • Bifidobacterium has been previously shown to potentiate immune function, which was mediated through the stimulation of cytokine production by macrophage. This study was performed to further characterize the effective component of Bifidobacterium by measuring the level of interleukin (IL)-6 cytokine using the RAW 264.7 murine cell line as a macrophage model. RAW 264.7 cells were cultured for 24 h in the presence of whole cells (WCs), cell walls (CWs), and cell-free extracts (CFEs) from various strains of Bifidobacterium and other lactic acid bacteria at various concentrations. The most effective component was different depending on the strains and the concentrations used. When tested with each cell fraction from Bifidobacterium sp. BGN4, heat treatment of the cell fractions lowered the production of IL-6. Synergistic effect was obtained, especially when CWs and CFEs were combined. Sonicated WCs stimulated IL-6 production more than intact WCs. The in vitro approaches employed here should be useful in further characterization of the effects of Bifidobacterium on gastrointestinal and systemic immunity.

Expression of TNF-${\alpha}$ and IL-$1{\beta}$ in Splenic Dendritic Cells and Their Serum Levels in Mouse Sparganosis

  • Yang, Hyun-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.2
    • /
    • pp.191-194
    • /
    • 2011
  • Sparganosis is a tissue invading helminthiasis infecting intermediate hosts, including humans. Strong immune responses are expected to occur in early phases of infection. Thus, we investigated cytokine expressions in splenic dendritic cells and in sera after experimental infection of mice. In splenic dendritic cells, TNF-${\alpha}$ and IL-$1{\beta}$ expression peaked at week 1 and week 3 post -infection (PI), respectively, and also early phase (week 2 PI) depressed cytokine expression was noticed. Serum IL-$1{\beta}$ concentration increased significantly at week 2 PI and peaked at week 6 PI, and that of TNF-${\alpha}$ peaked at week 6 PI. These results showed that pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$, are chronologically regulated in mouse sparganosis.

Potential benefits of ginseng against COVID-19 by targeting inflammasomes

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.722-730
    • /
    • 2022
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogenic virus that causes coronavirus disease 2019 (COVID-19), with major symptoms including hyper-inflammation and cytokine storm, which consequently impairs the respiratory system and multiple organs, or even cause death. SARS-CoV-2 activates inflammasomes and inflammasome-mediated inflammatory signaling pathways, which are key determinants of hyperinflammation and cytokine storm in COVID-19 patients. Additionally, SARS-CoV-2 inhibits inflammasome activation to evade the host's antiviral immunity. Therefore, regulating inflammasome initiation has received increasing attention as a preventive measure in COVID-19 patients. Ginseng and its major active constituents, ginsenosides and saponins, improve the immune system and exert anti-inflammatory effects by targeting inflammasome stimulation. Therefore, this review discussed the potential preventive and therapeutic roles of ginseng in COVID-19 based on its regulatory role in inflammasome initiation and the host's antiviral immunity.

Immunoregulatory Action of Soeumin Seungyangikkitang (소음인(少陰人) 승양익기탕(升陽益氣湯)의 면역조절작용(免疫調節作用))

  • Ryu, Chang-ryeol;Song, Jeong-mo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.13 no.3
    • /
    • pp.102-113
    • /
    • 2001
  • The purpose of this research was to investigate the effects of Seungyangikkitang (SIT) on the immune cells in BALB/c mice. SIT (500mg/kg) was administerd p.o. once a day for 7 days. SIT enhanced the proliferation of thymocytes, but decreased the proliferation of splenocytes. SIT enhanced the subpopulation of cytotoxic T cells in thymocytes and helper T cells in splenocytes, but did not affect the subpopulation of B220/Thy1 cells. SIT enhanced the production of γ-interferon and interleukin-2 in thymocytes, splenocytes and serum, but did not affect the production of interleukin-4. SIT suppressed the production of nitric oxide, but enhanced the lucigenin chemiluminescence and the engulfment of FITC-conjugated E. coli particles in peritoneal macrophages. These results suggest that SIT has a potent activity on the specific immunity via the cytokine secretion of Th1 cells and the non-specific immunity via the phagocytic activity of macrophages in vivo.

  • PDF

Cytokines in Follicular Helper T Cell Biology in Physiologic and Pathologic Conditions

  • Jinyong Choi;Shane Crotty;Youn Soo Choi
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.8.1-8.17
    • /
    • 2024
  • Follicular helper T cells (Tfh) play a crucial role in generating high-affinity antibodies (Abs) and establishing immunological memory. Cytokines, among other functional molecules produced by Tfh, are central to germinal center (GC) reactions. This review focuses on the role of cytokines, including IL-21 and IL-4, in regulating B cell responses within the GC, such as differentiation, affinity maturation, and plasma cell development. Additionally, this review explores the impact of other cytokines like CXCL13, IL-10, IL-9, and IL-2 on GC responses and their potential involvement in autoimmune diseases, allergies, and cancer. This review highlights contributions of Tfh-derived cytokines to both protective immunity and immunopathology across a spectrum of diseases. A deeper understanding of Tfh cytokine biology holds promise for insights into biomedical conditions.