• Title/Summary/Keyword: immune activation

Search Result 947, Processing Time 0.026 seconds

Trypanosoma cruzi Dysregulates piRNAs Computationally Predicted to Target IL-6 Signaling Molecules During Early Infection of Primary Human Cardiac Fibroblasts

  • Ayorinde Cooley;Kayla J. Rayford;Ashutosh Arun;Fernando Villalta;Maria F. Lima;Siddharth Pratap;Pius N. Nde
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.51.1-51.20
    • /
    • 2022
  • Trypanosoma cruzi, the etiological agent of Chagas disease, is an intracellular protozoan parasite, which is now present in most industrialized countries. About 40% of T. cruzi infected individuals will develop severe, incurable cardiovascular, gastrointestinal, or neurological disorders. The molecular mechanisms by which T. cruzi induces cardiopathogenesis remain to be determined. Previous studies showed that increased IL-6 expression in T. cruzi patients was associated with disease severity. IL-6 signaling was suggested to induce pro-inflammatory and pro-fibrotic responses, however, the role of this pathway during early infection remains to be elucidated. We reported that T. cruzi can dysregulate the expression of host PIWI-interacting RNAs (piRNAs) during early infection. Here, we aim to evaluate the dysregulation of IL-6 signaling and the piRNAs computationally predicted to target IL-6 molecules during early T. cruzi infection of primary human cardiac fibroblasts (PHCF). Using in silico analysis, we predict that piR_004506, piR_001356, and piR_017716 target IL6 and SOCS3 genes, respectively. We validated the piRNAs and target gene expression in T. cruzi challenged PHCF. Secreted IL-6, soluble gp-130, and sIL-6R in condition media were measured using a cytokine array and western blot analysis was used to measure pathway activation. We created a network of piRNAs, target genes, and genes within one degree of biological interaction. Our analysis revealed an inverse relationship between piRNA expression and the target transcripts during early infection, denoting the IL-6 pathway targeting piRNAs can be developed as potential therapeutics to mitigate T. cruzi cardiomyopathies.

The complement system: a potential target for the comorbidity of chronic pain and depression

  • Shanshan Tang;Wen Hu;Helin Zou;Qingyang Luo;Wenwen Deng;Song Cao
    • The Korean Journal of Pain
    • /
    • v.37 no.2
    • /
    • pp.91-106
    • /
    • 2024
  • The mechanisms of the chronic pain and depression comorbidity have gained significant attention in recent years. The complement system, widely involved in central nervous system diseases and mediating non-specific immune mechanisms in the body, remains incompletely understood in its involvement in the comorbidity mechanisms of chronic pain and depression. This review aims to consolidate the findings from recent studies on the complement system in chronic pain and depression, proposing that it may serve as a promising shared therapeutic target for both conditions. Complement proteins C1q, C3, C5, as well as their cleavage products C3a and C5a, along with the associated receptors C3aR, CR3, and C5aR, are believed to have significant implications in the comorbid mechanism. The primary potential mechanisms encompass the involvement of the complement cascade C1q/C3-CR3 in the activation of microglia and synaptic pruning in the amygdala and hippocampus, the role of complement cascade C3/C3a-C3aR in the interaction between astrocytes and microglia, leading to synaptic pruning, and the C3a-C3aR axis and C5a-C5aR axis to trigger inflammation within the central nervous system. We focus on studies on the role of the complement system in the comorbid mechanisms of chronic pain and depression.

Hepatitis B virus X Protein Promotes Liver Cancer Progression through Autophagy Induction in Response to TLR4 Stimulation

  • Juhee Son;Mi-Jeong Kim;Ji Su Lee;Ji Young Kim;Eunyoung Chun;Ki-Young Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.37.1-37.17
    • /
    • 2021
  • Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.

Induction of Peptide-specific CTL Activity and Inhibition of Tumor Growth Following Immunization with Nanoparticles Coated with Tumor Peptide-MHC-I Complexes

  • Sang-Hyun Kim;Ha-Eun Park;Seong-Un Jeong;Jun-Hyeok Moon;Young-Ran Lee;Jeong-Ki Kim;Hyunseok Kong;Chan-Su Park;Chong-Kil Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.44.1-44.15
    • /
    • 2021
  • Tumor peptides associated with MHC class I molecules or their synthetic variants have attracted great attention for their potential use as vaccines to induce tumor-specific CTLs. However, the outcome of clinical trials of peptide-based tumor vaccines has been disappointing. There are various reasons for this lack of success, such as difficulties in delivering the peptides specifically to professional Ag-presenting cells, short peptide half-life in vivo, and limited peptide immunogenicity. We report here a novel peptide vaccination strategy that efficiently induces peptide-specific CTLs. Nanoparticles (NPs) were fabricated from a biodegradable polymer, poly(D,L-lactic-co-glycolic acid), attached to H-2Kb molecules, and then the natural peptide epitopes associated with the H-2Kb molecules were exchanged with a model tumor peptide, SIINFEKL (OVA257-268). These NPs were efficiently phagocytosed by immature dendritic cells (DCs), inducing DC maturation and activation. In addition, the DCs that phagocytosed SIINFEKL-pulsed NPs potently activated SIINFEKL-H2Kb complex-specific CD8+ T cells via cross-presentation of SIINFEKL. In vivo studies showed that intravenous administration of SIINFEKL-pulsed NPs effectively generated SIINFEKL-specific CD8+ T cells in both normal and tumor-bearing mice. Furthermore, intravenous administration of SIINFEKL-pulsed NPs into EG7.OVA tumor-bearing mice almost completely inhibited the tumor growth. These results demonstrate that vaccination with polymeric NPs coated with tumor peptide-MHC-I complexes is a novel strategy for efficient induction of tumor-specific CTLs.

Cytokine Inductions and Intracellular Signal Profiles by Stimulation of dsRNA and SEB in the Macrophages and Epithelial Cells

  • Jun-Pyo Choi;Purevsuren Losol;Ghazal Ayoub;Mihong Ji;Sae-Hoon Kim;Sang-Heon Cho;Yoon-Seok Chang
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.15.1-15.16
    • /
    • 2022
  • Foreign molecules, including viruses and bacteria-derived toxins, can also induce airway inflammation. However, to the best of our knowledge, the roles of these molecules in the development of airway inflammation have not been fully elucidated. Herein, we investigated the precise role and synergistic effect of virus-mimicking double-stranded RNA (dsRNA) and staphylococcal enterotoxin B (SEB) in macrophages and epithelial cells. To identify cytokine expression profiles, both the THP-1-derived macrophages and BEAS-2B epithelial cells were stimulated with dsRNA or SEB. A total of 21 cytokines were evaluated in the culture supernatants. We observed that stimulation with dsRNA induced cytokine production in both cell types. However, cytokine production was not induced in SEB-stimulated epithelial cells, compared to the macrophages. The synergistic effect of dsRNA and SEB was evaluated observing cytokine level and intracellular phospho-signaling. Fifteen different types were detected in high-dose dsRNA-stimulated epithelial cells, and 12 distinct types were detected in macrophages; those found in macrophages lacked interferon production compared to the epithelial cells. Notably, a synergistic effect of cytokine induction by co-stimulation of dsRNA and SEB was observed mainly in epithelial cells, via activation of most intracellular phosphor-signaling. However, macrophages only showed an accumulative effect. This study showed that the type and severity of cytokine productions from the epithelium or macrophages could be affected by different intensities and a combination of dsRNA and SEB. Further studies with this approach may improve our understanding of the development and exacerbation of airway inflammation and asthma.

IL-34 Aggravates Steroid-Induced Osteonecrosis of the Femoral Head via Promoting Osteoclast Differentiation

  • Feng Wang;Hong Sung Min;Haojie Shan;Fuli Yin;Chaolai Jiang;Yang Zong;Xin Ma;Yiwei Lin;Zubin Zhou;Xiaowei Yu
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.25.1-25.11
    • /
    • 2022
  • IL-34 can promote osteoclast differentiation and activation, which may contribute to steroid-induced osteonecrosis of the femoral head (ONFH). Animal model was constructed in both BALB/c and IL-34 deficient mice to detect the relative expression of inflammation cytokines. Micro-CT was utilized to reveal the internal structure. In vitro differentiated osteoclast was induced by culturing bone marrow-derived macrophages with IL-34 conditioned medium or M-CSF. The relative expression of pro-inflammation cytokines, osteoclast marker genes, and relevant pathways molecules was detected with quantitative real-time RT-PCR, ELISA, and Western blot. Up-regulated IL-34 expression could be detected in the serum of ONFH patients and femoral heads of ONFH mice. IL-34 deficient mice showed the resistance to ONFH induction with the up-regulated trabecular number, trabecular thickness, bone value fraction, and down-regulated trabecular separation. On the other hand, inflammatory cytokines, such as TNF-α, IFN-γ, IL-6, IL-12, IL-2, and IL-17A, showed diminished expression in IL-34 deficient ONFH induced mice. IL-34 alone or works in coordination with M-CSF to promote osteoclastogenesis and activate ERK, STAT3, and non-canonical NF-κB pathways. These data demonstrate that IL-34 can promote the differentiation of osteoclast through ERK, STAT3, and non-canonical NF-κB pathways to aggravate steroid-induced ONFH, and IL-34 can be considered as a treatment target.

Aged Sanroque Mice Spontaneously Develop Sjögren's Syndrome-like Disease

  • Suk San Choi;Eunkyeong Jang;Yeon-Kyung Oh;Kiseok Jang;Mi-La Cho;Sung-Hwan Park;Jeehee Youn
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.7.1-7.11
    • /
    • 2019
  • Sjögren's syndrome (SS) is a chronic inflammatory autoimmune disorder that affects mainly salivary and lacrimal glands, but its cause remains largely unknown. Clinical data indicating that SS occurs in a substantial proportion of patients with lupus points to common pathogenic mechanisms underlying the two diseases. To address this idea, we asked whether SS develops in the lupus-prone mouse strain sanroque (SAN). Owing to hyper-activation of follicular helper T (Tfh) cells, female SAN mice developed lupus-like symptoms at approximately 20 wk of age but there were no signs of SS at that time. However, symptoms typical of SS were evident at approximately 40 wk of age, as judged by reduced saliva flow rate, sialadenitis, and IgG deposits in the salivary glands. Increases in serum titers of SS-related autoantibodies and numbers of autoantibody-secreting cells in cervical lymph nodes (LNs) preceded the pathologic manifestations of SS and were accompanied by expansion of Tfh cells and their downstream effector cells. Thus, our results suggest that chronic dysregulation of Tfh cells in salivary gland-draining LNs is sufficient to drive the development of SS in lupus-prone mice.

Anti-inflammatory Effects of Haepyoijin-tang in Aspergillus Oryzae Protease Induced Respiratory Inflammation Model (Aspergillus oryzae protease 유도 호흡기 염증모델에서 해표이진탕(解表二陳湯)의 항염증 효과)

  • Bo-In Kwon;Joo-Hee Kim
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.16-21
    • /
    • 2024
  • Haepyoijin-tang and its main components have been used for phlegm, cough and dyspnea. Using a respiratory inflammation model, we intend to reveal the anti-inflammatory effect and pharmacological mechanism of Haepyoijin-tang. We induced the respiratory inflammation model by Aspergillus oryzae protease and ovalbumin administration. Female Balb/c mice (8 weeks old) were classified into four groups as follows: saline control group, aspergillus oryzae protease and ovalbumin induced respiratory inflammation group (vehicle), inflammation with Haepyoijin-tang (200 mg/kg) administration group, inflammation with dexamethasone (5 mg/kg) administration group (n=7). To identify the anti-inflammatory effects of Haepyoijin-tang water extracts, we measured the inflammatory cell number in bronchoalveolar lavage fluid (BALF) and total live lung cell number. In addition, we checked eosinophil ratio and number in BALF. And Interleukin (IL)-5 level was also measured in lung cell culture supernatant. To confirm the mechanism of anti-inflammatory effects, we analyzed the activated helper T cell (CD4+CD25+ cell) and Th2 cell (CD4+GATA3+ cell) ratio and number in lung by using flow cytometry. Finally, we attempted to confirm the immune mechanism by measuring the ratio and number of regulatory T cells (CD4+Foxp3+ cell). Haepyoijin-tang extracts treatment diminished inflammatory cell, especially, eosinophil number in BALF and total live lung cell number. Moreover, IL-5 level was reduced in Haepyoijin-tang treated group. Surprisingly, Haepyoijin-tang extracts administration not only decreased the activated helper T cell but also Th2 cell population in lung. Additionally, regulatory T cell population was increased in Haepyoijin-tang administration group. Our findings proved that Haepyoijin-tang extract have anti-inflammatory efficacy by suppressing Th2 cell activation and promoting regulatory T cell population.

The Optimal Activation State of Dendritic Cells for the Induction of Antitumor Immunity (항종양 면역반응 유도를 위한 수지상세포의 최적 활성화 조건)

  • Nam, Byung-Hyouk;Jo, Wool-Soon;Lee, Ki-Won;Oh, Su-Jung;Kang, Eun-Young;Choi, Yu-Jin;Do, Eun-Ju;Hong, Sook-Hee;Lim, Young-Jin;Kim, Ki-Uk;Jeong, Min-Ho
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.904-910
    • /
    • 2006
  • Dendritic cells (DCs) are the only antigen presenting cells (APCs) capable of initiating immune responses, which is crucial for priming the specific cytotoxic T lymphocyte (CTL) response and tumor immunity. Upon activation by DCs, CD4+ helper T cells can cross-prime CD8+ CTLs via IL-12. However, recently activated DCs were described to prime in vitro strong T helper cell type 1 $(Th_1)$ responses, whereas at later time points, they preferentially prime $Th_2$ cells. Therfore, we examined in this study the optimum kinetic state of DCs activation impacted on in vivo priming of tumor-specific CTLs by using ovalbumin (OVA) tumor antigen model. Bone-marrow-derived DCs showed an appropriate expression of surface MHC and costimulatory molecules after 6 or 7-day differentiation. The 6-day differentiated DCs pulsed with OVA antigen for 8 h (8-h DC) and followed by restimulation with LPS for 24 h maintained high interleukin (IL)-12 production potential, accompanying the decreased level in their secretion by delayed re-exposure time to LPS. Furthermore, immunization with 8-h DC induced higher intracellular $interferon(IFN)-{\gamma}+/CD8+T$ cells and elicited more powerful cytotoxicity of splenocytes to EG7 cells, a clone of EL4 cells transfected with an OVA cDNA, than immunization with 24-h DC. In the animal study for the evaluation of therapeutic or protective antitumor immunity, immunization with 8-h DC induced an effective antitumor immunity against tumor of EG7 cells and completely protected mice from tumor formation and prolonged survival, respectively. The most commonly used and clinically applied DC-based vaccine is based on in vitro antigen loading for 24 h. However, our data indicated that antigen stimulation over 8 h decreased antitumor immunity with functional exhaustion of DCs, and that the 8-h DC would be an optimum activation state impacted on in vivo priming of tumor-specific CTLs and subsequently lead to induction of strong antitumor immunity.

Enhancing the Effects of Zerumbone on THP-1 Cell Activation (단핵구세포주의 활성에 미치는 Zerumbone의 영향)

  • Lee, Min Ho;Kim, Sa Hyun;Ryu, Sung Ryul;Lee, Pyeongjae;Moon, Cheol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Zerumbone is a major component of the essential oil from Zingiber zerumbet Smith, which is a kind of wild ginger. In addition, various biological functions, such as liver protection, pain relief, atherosclerosis, and antimicrobial activity have been reported. It is also known to be effective in the proliferation of immune cells and the expression of cytokines. In this study, we investigated the effects of zerumbone on monocyte activation. First, it was confirmed that the proliferation of THP-1 cells was increased by zerumbone. The strongest increase in THP-1 proliferation after lipopolysaccharide treatment was observed at $5{\mu}M$ zerumbone treatment, and the increase of cell proliferation without lipopolysaccharide was the highest at $10{\mu}M$. Conversely, when treated with $50{\mu}M$ zerumbone, a rapid decrease of proliferation was observed regardless of the presence of lipopolysaccharide (LPS). The phosphorylation of signaling protein, Erk, induced by LPS was also increased by zerumbone. The strongest increase in phosphorylation was observed when treated with $50{\mu}M$ of zerumbone with reduced proliferation. The activity of transcription factor $NF-{\kappa}B$ was not significantly altered by zerumbone alone, but increased when treated with lipopolysaccharide. Furthermore, the transcription of the inflammatory cytokines $TNF-{\alpha}$ and IL-8, which are regulated by $NF-{\kappa}B$, is also increased by zerumbone. These results suggest that zerumbone can enhance the proliferation and activity of monocytes. Furthermore, it is believed that zerumbone can enhance rthe immune responses through increased monocyte activity in bacterial infections with LPS, thereby helping to treat effective bacteria.