• Title/Summary/Keyword: immersion technique

Search Result 171, Processing Time 0.025 seconds

APPLICATION OF COLD SPRAY COATING TECHNIQUE TO AN UNDERGROUND DISPOSAL COPPER CANISTER AND ITS CORROSION PROPERTIES

  • Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won;Kim, Hyung-Jun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.557-566
    • /
    • 2011
  • A cold spray coating (CSC) of copper was studied for its application to a high-level radioactive waste (HLW) disposal canister. Several copper coatings of 10 mm thick were fabricated using two kinds of copper powders with different oxygen contents, and SS 304 and nodular cast iron were used as their base metal substrates. The fabricated CSC coppers showed a high tensile strength but were brittle in comparison with conventional non-coating copper, hereinafter defined to as "commercial copper". The corrosion behavior of CSC coppers was evaluated by comparison with commercial coppers, such as extruded and forged coppers. The polarization test results showed that the corrosion potential of the CSC coppers was closely related to its purity; low-purity (i.e., high oxygen content) copper exhibited a lower corrosion potential, and high-purity copper exhibited a relatively high corrosion potential. The corrosion rate converted from the measured corrosion current was not, however, dependent on its purity: CSC copper showed a little higher rate than that of commercial copper. Immersion tests in aqueous HCl solution showed that CSC coppers were more susceptible to corrosion, i.e., they had a higher corrosion rate. However, the difference was not significant between commercial copper and high-purity CSC copper. The decrease of corrosion was observed in a humid air test presumably due to the formation of a protective passive film. In conclusion, the results of this study indicate that CSC application of copper could be a useful option for fabricating a copper HLW disposal canister.

PPTA/PVDF blend membrane integrated process for treatment of spunlace nonwoven wastewater

  • Li, Hongbin;Shi, Wenying;Qin, Longwei;Zhu, Hongying;Du, Qiyun;Su, Yuheng;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.311-321
    • /
    • 2017
  • Hydrophilic and high modulus PPTA molecules were incorporated into PVDF matrix via the in situ polymerization of PPD and TPC in PVDF solution. PPTA/PVDF/NWF blend membrane was prepared through the immersion precipitation phase inversion method and nonwoven coating technique. The membrane integrated technology including PPTA/PVDF/NWF blend membrane and reverse osmosis (RO) membrane was employed to treat the polyester/viscose spunlace nonwoven process wastewater. During the consecutive running of six months, the effects of membrane integrated technology on the COD, ammonia nitrogen, suspended substance and pH value of water were studied. The results showed that the removal rate of COD, ammonia nitrogen and suspended substance filtered by PPTA/PVDF blend membrane was kept above 90%. The pH value of the permeate water was about 7.1 and the relative water flux of blend membrane remained above 90%. After the deep treatment of RO membrane, the permeate water quality can meet the water circulation requirement of spunlace process.

Depth Map Correction Algorithm based on Segmentation in Multi-view Systems (다중시점 환경에서의 슈퍼픽셀 세그먼테이션 기반 깊이 영상 개선 알고리즘)

  • Jung, Woo-Kyung;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.954-964
    • /
    • 2020
  • In immersive media, the most important factor that provides immersion is depth information. Therefore, it is essential to obtain high quality depth information in order to produce high quality immersive media. In this paper we propose an algorithm to improve depth map, considering the segmentation of images and the relationship between multiple views in multi-view systems. The proposed algorithm uses a super-pixel segmentation technique to divide the depth map of the reference view into several segments, and project each segment into adjacent view. Subsequently, the depth map of the adjacent view is improved using plane estimation using the information of the projected segment, and then reversed to the reference view. This process is repeated for several adjacent views to improve the reference depth map by updating the values of the improved adjacent views and the initial depth map of the reference view. Through simulation, the proposed algorithm is shown to surpass the conventional algorithm subjectively and objectively.

Accuracy evaluation of threshold rainfall impacting pedestrian using ROC (ROC를 이용한 보행에 영향을 미치는 한계강우량의 정확도 평가)

  • Choo, Kyungsu;Kang, Dongho;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1173-1181
    • /
    • 2020
  • Recently, as local heavy rains occur frequently in a short period of time, economic and social impacts are increasing beyond the simple primary damage. In advanced meteorologically advanced countries, realistic and reliable impact forecasts are conducted by analyzing socio-economic impacts, not information transmission as simple weather forecasts. In this paper, the degree of flooding was derived using the Spatial Runoff Assessment Tool (S-RAT) and FLO-2D models to calculate the threshold rainfall that can affect human walking, and the threshold rainfall of the concept of Grid to Grid (G2G) was calculated. In addition, although it was used a lot in the medical field in the past, a quantitative accuracy analysis was performed through the ROC analysis technique, which is widely used in natural phenomena such as drought or flood and machine learning. As a result of the analysis, the results of the time period similar to that of the actual and simulated immersion were obtained, and as a result of the ROC (Receiver Operating Characteristic) curve, the adequacy of the fair stage was secured with more than 0.7.

Efficient Sound Control Method in Virtual Environments Using Raytracing Based Diffraction

  • Kim, Jong-Hyun;Choi, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.81-87
    • /
    • 2022
  • In this paper, we propose diffraction-based sound control method to improve sound immersion in a virtual environment. The proposed technique can express the wave and flow of sound in a physical environment and a pattern similar to diffraction in real-time. Our approach determines whether there is an obstacle from the location of the sound source and then calculates the position of the new sound reflected and diffracted by the obstacle. Based on ray tracing, it determines whether or not it collides with an obstacle, and predicts the sound level of the agent behind the obstacle by using the vector reflected and refraction by the collision. In this process, the sound attenuation according to the distance/material is modeled by attenuating the size of the sound according to the number of reflected/refracted rays. As a result, the diffraction pattern expressed in the physics-based approach was expressed in real time, and it shows that the diffraction pattern also changes as the position of the obstacle is changed, thereby showing the result of naturally spreading the size of the sound. The proposed method restores the diffusion and diffraction characteristics of sound expressed in real life almost similarly.

Hard TiN Coating by Magnetron-ICP P $I^3$D

  • Nikiforov, S.A.;Kim, G.H.;Rim, G.H.;Urm, K.W.;Lee, S.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.414-420
    • /
    • 2001
  • A 30-kV plasma immersion ion implantation setup (P $I^3$) has been equipped with a self-developed 6'-magnetron to perform hard coatings with enhanced adhesion by P $I^3$D(P $I^3$ assisted deposition) process. Using ICP source with immersed Ti antenna and reactive magnetron sputtering of Ti target in $N_2$/Ar ambient gas mixture, the TiN films were prepared on Si substrates at different pulse bias and ion-to-atom arrival ratio ( $J_{i}$ $J_{Me}$ ). Prior to TiN film formation the nitrogen implantation was performed followed by deposition of Ti buffer layer under A $r^{+}$ irradiation. Films grown at $J_{i}$ $J_{Me}$ =0.003 and $V_{pulse}$=-20kV showed columnar grain morphology and (200) preferred orientation while those prepared at $J_{i}$ $J_{Me}$ =0.08 and $V_{pulse}$=-5 kV had dense and eqiaxed structure with (111) and (220) main peaks. X-ray diffraction patterns revealed some amount of $Ti_{x}$ $N_{y}$ in the films. The maximum microhardness of $H_{v}$ =35 GN/ $M^2$ was at the pulse bias of -5 kV. The P $I^3$D technique was applied to enhance wear properties of commercial tools of HSS (SKH51) and WC-Co alloy (P30). The specimens were 25-kV PII nitrogen implanted to the dose 4.10$^{17}$ c $m^{-2}$ and then coated with 4-$\mu\textrm{m}$ TiN film on $Ti_{x}$ $N_{y}$ buffer layer. Wear resistance was compared by measuring weight loss under sliding test (6-mm $Al_2$ $O_3$ counter ball, 500-gf applied load). After 30000 cycles at 500 rpm the untreated P30 specimen lost 3.10$^{-4}$ g, and HSS specimens lost 9.10$^{-4}$ g after 40000 cycles while quite zero losses were demonstrated by TiN coated specimens.s.

  • PDF

Applications of Self-assembled Monolayer Technologies in MEMS Fabrication (MEMS 공정에서의 자기 조립 단분자층 기술 응용)

  • Woo-Jin Lee;Seung-Min Lee;Seung-Kyun Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.13-20
    • /
    • 2023
  • The process of microelectromechanical system (MEMS) fabrication involves surface treatment to impart functionality to the device. Such surface treatment method is the self-assembled monolayer (SAM) technique, which modifies and functionalizes the surface of MEMS components with organic molecule monolayer, possessing a precisely controllable strength that depends on immersion time and solution concentration. These monolayers spontaneously adsorb on polymeric substrates or metal/ceramic components offering high precision at the nanoscale and modifying surface properties. SAM technology has been utilized in various fields, such as tribological property control, mass-production lithography, and ultrasensitive organic/biomolecular sensor applications. This paper provides an overview of the development and application of SAM technology in various fields.

Developing a first-person horror game using Unreal Engine and an action camera perspective (언리얼엔진과 액션 카메라 시점을 활용한 1인칭 공포 게임 개발)

  • Nam-Young Kim;Young-Min Joo;Won-Whoi Huh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.75-81
    • /
    • 2024
  • This paper focuses on developing a first-person 3D game to provide extreme fear to players through realistic camera direction utilizing the features of action cameras. As a new camera production technique, we introduce perspective distortion using a wide-angle lens and camera shake when moving to provide higher immersion than existing games. The theme of the game is horror room escape, and the player starts with a firearm, but in order to overcome the concern that the game's difficulty is low due to the use of firearms, the player is asked to control the use of firearms by imposing burdens such as chasing monsters and reducing the number of magazines. The significance of this paper is that we developed a new type of 3D game that maximizes the fear effect of players through realistic production.

Effect of Liposome-coated Hemicellulase on the Tenderization of Burdock (리포좀 코팅한 hemicellulase가 우엉의 연화에 미치는 효과)

  • Kim, Kwang-Il;Lee, SangYoon;Lee, Jiseon;Lee, JungGyu;Min, Sang-Gi;Choi, Mi-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.698-703
    • /
    • 2015
  • The elderly or patients with masticatory disturbance and deglutition dysfunctions, may have difficulty in chewing or biting foods with a hard texture. Thus, softening of the texture of foods using hemicellulase immobilized by the nanoencapsulation technique was examined in this study. Burdock was cut into cylindrical-shaped samples, which were immersed in distilled water and non-coated or coated enzymes for 48 h at $4^{\circ}C$. The hardness of the treated samples decreased compared to the control. Microstructural observations revealed that the cells in the non-coated burdock were destroyed after 24 h. From the point of view of enzyme activity, the initial activity of the non-coated enzymes was higher than that of the coated enzymes. However, the enzyme activity was not significantly affected by the immersion time. Therefore, it appears that the encapsulation technique for enzymes may be useful for softening the texture of foods.

Effect of HA Crystals Precipitated by Hydrothermal-Treatment on the Bioactivity of Ti-6Al-7Nb Alloy (열수처리에 의해 석출된 HA 결정이 Ti-6Al-7Nb 합금의 생체활성에 미치는 영향)

  • Kwon O. S.;Choi S. K.;Moon J. W.;Lee M. H.;Bae T. S.;Lee O. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.607-613
    • /
    • 2004
  • This study was to investigate the surface properties of electrochemically oxidized Ti-6Al-7Nb alloy by anodic spark discharge technique. Anodizing was performed at current density 30 $mA/cm^2$ up to 300 V in electrolyte solutions containing $DL-{\alpha}$-glycerophosphate disodium salt hydrate($DL-{\alpha}$-GP) and calcium acetate (CA). Hydrothermal treatment was done at $300^{\circ}C$ for 2 hrs to produce a thin outermost layer of hydroxyapatite (HA). The bioactivity was evaluated from HA formation on the surfaces in a Hanks' solution with pH 7.4 at $36.5^{\circ}C$ for 30 days. The size of micropores and the thickness of oxide film increased and complicated multilayer by increasing the spark forming voltage. Needle-like HA crystals were observed on anodic oxide film after the hydrothermal treatment at $300^{\circ}C$ for 2 hrs. When increasing $DL-{\alpha}$-GP in electrolyte composition, the precipitated HA crystals showed the shape of thick and shorter rod. However, when increasing CA, the more fine needle shape HA crystals were appeared. The bioactivity in Hanks' solution was accelerated when the oxide films composed with strong anatase peak with presence of rutile peak. The increase of amount of Ca and P was observed in groups having bioactivity in Hanks' solution. The Ca/P ratio of the precipitated HA layer was equivalent to that of HA crystal and it was closer to 1.67 as increasing the immersion time in Hanks' solution.