• Title/Summary/Keyword: imaging damage

Search Result 278, Processing Time 0.025 seconds

Study of Optimal Conditions Affecting the Photothermal Effect and Fluorescence Characteristics of Indocyanine Green

  • Seo, Sung Hoon;Bae, Min Gyu;Park, Hyeong Ju;Ahn, Jae Sung;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.554-561
    • /
    • 2021
  • Indocyanine green (ICG) is a cyanine dye that has been used in medical diagnostics based on fluorescence imaging, and in medical therapy based on the photothermal effect. It is important to systematically understand the photothermal effect and fluorescence characteristics of ICG simultaneously. By varying a number of conditions such as laser power density, laser irradiation wavelength, concentration of ICG solution, and exposure time of laser irradiation, the intensity properties of fluorescence and the temperature change induced by the photothermal effect are measured simultaneously using a charge-coupled-device camera and a thermal-imaging camera. The optimal conditions for maximizing the photothermal effect are determined, while maintaining a relatively long lifetime and high efficiency of the fluorescence for fluorescence imaging. When the concentration of ICG is approximately 50 ㎍/ml and the laser power density exceeds 1.5 W/cm2, the fluorescence lifetime is the longest and the temperature induced by the photothermal effect rapidly increases, exceeding the critical temperature sufficient to damage human cells and tissues. The findings provide useful insight into the realization of effective photothermal therapy, while also specifying the site to be treated and enabling real-time treatment monitoring.

Understanding the Pathophysiology and Magnetic Resonance Imaging of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders

  • Laura Cacciaguerra;Maria A. Rocca;Massimo Filippi
    • Korean Journal of Radiology
    • /
    • v.24 no.12
    • /
    • pp.1260-1283
    • /
    • 2023
  • Magnetic resonance imaging (MRI) has been extensively applied in the study of multiple sclerosis (MS), substantially contributing to diagnosis, differential diagnosis, and disease monitoring. MRI studies have significantly contributed to the understanding of MS through the characterization of typical radiological features and their clinical or prognostic implications using conventional MRI pulse sequences and further with the application of advanced imaging techniques sensitive to microstructural damage. Interpretation of results has often been validated by MRI-pathology studies. However, the application of MRI techniques in the study of neuromyelitis optica spectrum disorders (NMOSD) remains an emerging field, and MRI studies have focused on radiological correlates of NMOSD and its pathophysiology to aid in diagnosis, improve monitoring, and identify relevant prognostic factors. In this review, we discuss the main contributions of MRI to the understanding of MS and NMOSD, focusing on the most novel discoveries to clarify differences in the pathophysiology of focal inflammation initiation and perpetuation, involvement of normal-appearing tissue, potential entry routes of pathogenic elements into the CNS, and existence of primary or secondary mechanisms of neurodegeneration.

Biological Applications of Helium Ion Microscopy

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.43 no.1
    • /
    • pp.9-13
    • /
    • 2013
  • The helium ion microscope (HIM) has recently emerged as a novel tool for imaging and analysis. Based on a bright ion source and small probe, the HIM offers advantages over the conventional field emission scanning electron microscope. The key features of the HIM include (1) high resolution (ca. 0.25 nm), (2) great surface sensitivity, (3) great contrast, (4) large depth-of-field, (5) efficient charge control, (6) reduced specimen damage, and (7) nanomachining capability. Due to the charge neutralization by flood electron beam, there is no need for conductive metal coating for the observation of insulating biological specimens by HIM. There is growing evidence that the HIM has substantial potential for high-resolution imaging of uncoated insulating biological specimens at the nanoscale.

Accessory mental foramen: A rare anatomical variation detected by cone-beam computed tomography

  • Torres, Marianna Guanaes Gomes;Valverde, Ludmila De Faro;Vidal, Manuela Torres Andion;Crusoe-Rebello, Ieda Margarida
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.61-65
    • /
    • 2015
  • The mental foramen is a bilateral opening in the vestibular portion of the mandible through which nerve endings, such as the mental nerve, emerge. In general, the mental foramen is located between the lower premolars. This region is a common area for the placement of dental implants. It is very important to identify anatomical variations in presurgical imaging exams since damage to neurovascular bundles may have a direct influence on treatment success. In the hemimandible, the mental foramen normally appears as a single structure, but there are some rare reports on the presence and number of anatomical variations; these variations may include accessory foramina. The present report describes the presence of accessory mental foramina in the right mandible, as detected by cone-beam computed tomography before dental implant placement.

Suggestion of standard color code for displaying ground acceleration (지진가속도 간의 칼라코드 표준화)

  • 지헌철;전정수;신진수;이희일;박정호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.61-71
    • /
    • 2002
  • Color-code imaging should be one of the best display tools for the quick perception of both damage area and its intensity, In this study we proposed the standard color code corresponding to maximum observed acceleration value. Since the acceleration value changes with frequency contents, we suggested to limit the frequency band less than 10Hz. The background considerations of this limitation, magnitude vs. dominant frequency, natural characteristics of artificial noises and the relationship between velocity and acceleration, were reviewed in detail. The standard of color code was assigned from 0.001%g to 20%g based on the possible earthquakes at Korean peninsula and the color imaging given by RGB value was shown to be very consistent, irrespective of hardware configuration.

  • PDF

Current research status for imaging neuroinflammation by PET

  • Namhun Lee;Jae Yong Choi
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.116-130
    • /
    • 2020
  • The aging society is globally one of biggest issue because it is related with various degenerative brain disease such as dementia, Parkinson's disease, Alzheimer's disease, multiple sclerosis, and cerebrovascular disease. These diseases are characterized by misfolded-protein aggregation; another pathological trait is "neuroinflammation". In physiological state, the resting microglia cells are activated and it removes abnormal synapses and cell membrane debris to maintain the homeostasis. In pathological state, however, microglia undergo morphological change form 'resting' to 'activated amoeboid phenotype' and the microglia cells are accumulated by neuronal damage, the inflammatory reactions induced nerve metamorphosis with a variety of neurotoxic factors including cytokines, chemokines, and reactive oxygen species. Thus, the activated microglia cell with various receptors (TSPO, COX, CR, P2XR, etc.) was perceived as important biomarkers for imaging the inflammatory progression. In this review, we would like to introduce the current status of the development of radiotracers that can image activated microglia.

Effect of forensic short wavelength UV on DNA (법과학 단파자외선이 DNA에 미치는 영향)

  • Kim, A-Ram;Kim, Woo-Joong;Park, Hee-Yeon;Lim, Si-Keun
    • Analytical Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.147-152
    • /
    • 2014
  • RUVIS(Reflective Ultraviolet Imaging System) is an effective equipment that detects the location of latent fingerprint at crime scene using short wavelength ultraviolet of 254 nm. In this study, the degree of DNA damage in biological samples was compared depending on the distance and time of processing using four commonly used RUVIS. 50% of DNA was damaged by treating 10 seconds at 10 cm distance in 3 types of RUVIS such as Police RUVIS, SIRCHIE mini light and SIRCHIE RUVIS. In addition, the degree of DNA damage was increased as the distance was closer and the treatment time was longer. It showed that short wavelength UV could cause DNA damage when used close to the samples at crime scene. Therefore, it was suggested to use RUVIS at a distance of at least 1 m. The degree of DNA damage was not significant by Polilight which used long wavelength ultraviolet of 350 nm. As a result, the choice and usage of which UV light and RUVIS were critical for detection of fingerprint and successful DNA typing.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

Development of Deep Learning-Based Damage Detection Prototype for Concrete Bridge Condition Evaluation (콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발)

  • Nam, Woo-Suk;Jung, Hyunjun;Park, Kyung-Han;Kim, Cheol-Min;Kim, Gyu-Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment of human-inaccessible facilities. This research was conducted to study the conditions of deep learning-based imaging data on bridges and to develop an evaluation prototype program for bridges. To develop a deep learning-based bridge damage detection prototype, the Semantic Segmentation model, which enables damage detection and quantification among deep learning models, applied Mask-RCNN and constructed learning data 5,140 (including open-data) and labeling suitable for damage types. As a result of performance modeling verification, precision and reproduction rate analysis of concrete cracks, stripping/slapping, rebar exposure and paint stripping showed that the precision was 95.2 %, and the recall was 93.8 %. A 2nd performance verification was performed on onsite data of crack concrete using damage rate of bridge members.

Ar-GCIB를 이용하여 ToF-SIMS에서 얻은 쥐의 뇌조직 이미지

  • Son, Hyeon-Gyeong;Lee, Tae-Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.378.1-378.1
    • /
    • 2016
  • 나노바이오연구분야에서 ToF-SIMS를 이용하여 lipid와 metabolite같은 저 분자의 생체물질을 측정하는데 널리 이용되어 왔다. 최근에는 고 분자량의 생체물질을 측정하기 위해서 C60, water cluster, argon cluster등의 다양한 종류의 클러스터 이온빔들이 개발되어 왔다. [1,2] 하지만 tissue샘플을 클러스터 이온빔을 이용하여 분석한 결과에서도 m/z 1500이상의 고분자를 측정한 결과는 거의 없다. 바이오샘플의 charging을 상쇄하기위해 low energy electron beam (~20 eV)을 사용하는데, low energy electron beam이 샘플에 damage를 주기 때문이다. [3] 본 연구에서는 electron fluence (electrons/cm2)가 증가함에 따라 PC(16:0/18:1(9Z)와 Ganglioside GM1의 intensity가 감소함을 알았고, low energy electron beam에 의해 생체 물질이 damage를 받을 수 있음을 확인하였다. 따라서 tissue 샘플을 SUS기판에 샘플링하고 Ar-GCIB를 이용하면 charging없이 tissue imaging을 성공적으로 수행할 수 있고, m/z 2000이상의 고 분자량의 생체물질을 측정할 수 있음을 확인하였다.

  • PDF