• Title/Summary/Keyword: image statistics

Search Result 727, Processing Time 0.026 seconds

Visualization of three-dimensional data with virtual reality (가상현실을 이용한 3차원 데이터 시각화)

  • Lee, Jae Eun;Ahn, Sojin;Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.345-362
    • /
    • 2017
  • Various data visualization methods are utilized to analyze a huge amount of data. Among various methods, a three-dimensional image requires the rotation of the image to show a stereo image on a two-dimensional screen. This study discusses two methods of batch method and real-time method, which make it possible to construct of stereo images to improve the restriction of the three-dimensional image display with virtual reality. This investigation can be useful to better explore a three-dimensional data structure.

A Study on Bayesian Image Restoraation with Edge Detection

  • Jongseok Um;Park, Byongsu
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.2
    • /
    • pp.217-225
    • /
    • 1996
  • We propose a line process for edge detection which is easy to implement foe Bayesian image restoration. Comparisons are made between the proposed method and the method suggesed by Geman and Geman (1984) in two cases, simple image and complicated image. We show that the proposed method improve images mainly at the edges.

  • PDF

How to identify fake images? : Multiscale methods vs. Sherlock Holmes

  • Park, Minsu;Park, Minjeong;Kim, Donghoh;Lee, Hajeong;Oh, Hee-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.583-594
    • /
    • 2021
  • In this paper, we propose wavelet-based procedures to identify the difference between images, including portraits and handwriting. The proposed methods are based on a novel combination of multiscale methods with a regularization technique. The multiscale method extracts the local characteristics of an image, and the distinct features are obtained through the regularized regression of the local characteristics. The regularized regression approach copes with the high-dimensional problem to build the relation between the local characteristics. Lytle and Yang (2006) introduced the detection method of forged handwriting via wavelets and summary statistics. We expand the scope of their method to the general image and significantly improve the results. We demonstrate the promising empirical evidence of the proposed method through various experiments.

Image Segmentation Using Level Set Method with New Speed Function (새로운 속도함수를 갖는 레벨 셋 방법을 이용한 의료영상분할)

  • Kim, Sun-Worl;Cho, Wan-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.335-345
    • /
    • 2011
  • In this paper, we propose a new hybrid speed function for image segmentation using level set. A new proposed speed function uses the region and boundary information of image object for the exact result of segmentation. The region information is defined by the probability information of pixel intensity in a ROI(region-of-interest), and the boundary information is defined by the gradient vector flow obtained from the gradient of image. We show the results of experiment for an various artificial image and real medical image to verify the accuracy of segmentation using proposed method.

Noise reduction algorithm for an image using nonparametric Bayesian method (비모수 베이지안 방법을 이용한 영상 잡음 제거 알고리즘)

  • Woo, Ho-young;Kim, Yeong-hwa
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.555-572
    • /
    • 2018
  • Noise reduction processes that reduce or eliminate noise (caused by a variety of reasons) in noise contaminated image is an important theme in image processing fields. Many studies are being conducted on noise removal processes due to the importance of distinguishing between noise added to a pure image and the unique characteristics of original images. Adaptive filter and sigma filter are typical noise reduction filters used to reduce or eliminate noise; however, their effectiveness is affected by accurate noise estimation. This study generates a distribution of noise contaminating image based on a Dirichlet normal mixture model and presents a Bayesian approach to distinguish the characteristics of an image against the noise. In particular, to distinguish the distribution of noise from the distribution of characteristics, we suggest algorithms to develop a Bayesian inference and remove noise included in an image.

CONSTRAINING COSMOLOGICAL PARAMETERS WITH IMAGE SEPARATION STATISTICS OF GRAVITATIONALLY LENSED SDSS QUASARS: MEAN IMAGE SEPARATION AND LIKELIHOOD INCORPORATING LENS GALAXY BRIGHTNESS

  • Han, Du-Hwan;Park, Myeong-Gu
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.83-92
    • /
    • 2015
  • Recent large scale surveys such as Sloan Digital Sky Survey have produced homogeneous samples of multiple-image gravitationally lensed quasars with well-defined selection effects. Statistical analysis on these can yield independent constraints on cosmological parameters. Here we use the image separation statistics of lensed quasars from Sloan Digital Sky Survey Quasar Lens Search (SQLS) to derive constraints on cosmological parameters. Our analysis does not require knowledge of the magnification bias, which can only be estimated from the detailed knowledge on the quasar luminosity function at all redshifts, and includes the consideration for the bias against small image separation quasars due to selection against faint lens galaxy in the follow-up observations for confirmation. We first use the mean image separation of the lensed quasars as a function of redshift to find that cosmological models with extreme curvature are inconsistent with observed lensed quasars. We then apply the maximum likelihood test to the statistical sample of 16 lensed quasars that have both measured redshift and magnitude of lens galaxy. The likelihood incorporates the probability that the observed image separation is realized given the luminosity of the lens galaxy in the same manner as Im et al. (1997). We find that the 95% confidence range for the cosmological constant (i.e., the vacuum energy density) is $0.72{\leq}{\Omega}_{\Lambda}{\leq}1.0$ for a flat universe. We also find that the equation of state parameter can be consistent with -1 as long as the matter density ${\Omega}_m{\leq}0.4$ (95% confidence range). We conclude that the image separation statistics incorporating the brightness of lens galaxies can provide robust constraints on the cosmological parameters.

Nonlinear Image Denoising Algorithm in the Presence of Heavy-Tailed Noise (Heavy-tailed 잡음에 노출된 이미지에서의 비선형 잡음제거 알고리즘)

  • Hahn, Hee-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.18-20
    • /
    • 2006
  • The statistics for the neighbor differences between the particular pixels and their neighbors are introduced. They are incorporated into the filter to remove additive Gaussian noise contaminating images. The derived denoising method corresponds to the maximum likelihood estimator for the heavy-tailed Gaussian distribution. The error norm corresponding to our estimator from the robust statistics is equivalent to Huber's minimax norm. Our estimator is also optimal in the respect of maximizing the efficacy under the above noise environment.

  • PDF

Adaptive Directional Filtering Techniques for Image Sequences (동영상을 위한 적응 방향성 필터링 기술)

  • 고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.7
    • /
    • pp.922-934
    • /
    • 1993
  • In this paper, statistical properties of the spatiotemporal center weighted median(CWM) filter for image sequences are investigated. It is statistically shown that the CWM filter preserves image structures under motion at the expense of noise suppression. To improve the CWM filter, a filter which can be effectively used in image sequence processing, the adaptive directional center weighted median filter (ADCWM), is proposed. This filter utilizes a multistage filtering structure based on adaptive symmetric order statistic(ASOS) operators which produce a pall of order statistics symmetric about the median. The ASOS's are selected by using adaptive parameters adjusted by local image statistics. It is shown experimentally that the proposed filter can preserve image structures while attenuating noise without the use of motion estimation.

  • PDF

A Sobel Operator Combined with Patch Statistics Algorithm for Fabric Defect Detection

  • Jiang, Jiein;Jin, Zilong;Wang, Boheng;Ma, Li;Cui, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.687-701
    • /
    • 2020
  • In the production of industrial fabric, it needs automatic real-time system to detect defects on the fabric for assuring the defect-free products flow to the market. At present, many visual-based methods are designed for detecting the fabric defects, but they usually lead to high false alarm. Base on this reason, we propose a Sobel operator combined with patch statistics (SOPS) algorithm for defects detection. First, we describe the defect detection model. mean filter is applied to preprocess the acquired image. Then, Sobel operator (SO) is applied to deal with the defect image, and we can get a coarse binary image. Finally, the binary image can be divided into many patches. For a given patch, a threshold is used to decide whether the patch is defect-free or not. Finally, a new image will be reconstructed, and we did a loop for the reconstructed image to suppress defects noise. Experiments show that the proposed SOPS algorithm is effective.

Adaptive MAP High-Resolution Image Reconstruction Algorithm Using Local Statistics (국부 통계 특성을 이용한 적응 MAP 방식의 고해상도 영상 복원 방식)

  • Kim, Kyung-Ho;Song, Won-Seon;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1194-1200
    • /
    • 2006
  • In this paper, we propose an adaptive MAP (Maximum A Posteriori) high-resolution image reconstruction algorithm using local statistics. In order to preserve the edge information of an original high-resolution image, a visibility function defined by local statistics of the low-resolution image is incorporated into MAP estimation process, so that the local smoothness is adaptively controlled. The weighted non-quadratic convex functional is defined to obtain the optimal solution that is as close as possible to the original high-resolution image. An iterative algorithm is utilized for obtaining the solution, and the smoothing parameter is updated at each iteration step from the partially reconstructed high-resolution image is required. Experimental results demonstrate the capability of the proposed algorithm.