• Title/Summary/Keyword: image registration

Search Result 518, Processing Time 0.025 seconds

Development of Location based Augmented Reality System for Public Underground Facility Management (공공지하시설물 관리를 위한 증강현실 시스템 개발)

  • Lee, Hyo-Jin;Kim, Ji-Sung;Seo, Ho-Seok;Cho, Young-Sik
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.237-243
    • /
    • 2018
  • Most of public underground facilities are installed under the ground, thus it is difficult to recognize the accurate location even with the drawings. Studies are conducted to understand exact position of underground facilities using augmented reality. However, in those studies, establishing of additional 3D object model database is needed when AR system is used at field. Because most of public underground facility information are established as 2 dimensional. In this study, AR system is developed as mobile application which can use original 2D underground facility data to transfer 3D AR data automatically without additional 3D database establishment.

3D-Based Monitoring System and Cloud Computing for Panoramic Video Service (3차원 기반의 모니터링 시스템과 클라우드 컴퓨팅을 이용한 파노라믹 비디오 서비스)

  • Cho, Yongwoo;Seok, Joo Myoung;Suh, Doug Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.590-597
    • /
    • 2014
  • This paper proposes multi-camera system that relies on 3D views for panoramic video and distribution method about panoramic video generation algorithm by using cloud computing. The proposed monitoring system monitors the projected 3D model view, instead of individual 2D views, to detect image distortions. This can minimize compensation errors caused by parallax, thereby improving the quality of the resulting panoramic video. Panoramic video generation algorithm can be divided into registration part and compositing part. Therefore we propose off-loading method of these parts with cloud computing for panoramic video service.

Potential Crisis and Opportunity in the K-pop Choreography Copyright

  • Kim, Joy
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.253-258
    • /
    • 2021
  • This study aims to expose the potential dangers of K-pop through the past and present of K-pop choreography copyrights and to suggest the need to secure digital choreography copyrights for the sustainability of K-pop considering national responsibility. As the content industry quickly sought countermeasures to digital transformation, such as the launch of K-pop platforms and the evolution of OMO (Online Merges with Offline) media commerce in response to changes in the industrial environment due to COVID-19, the annual export of the domestic content industry increased by 6.3% compared to the previous year. Accordingly, our copyright does not require that works be fixed in tangibles, as in Japan and Germany, on the basis of entrusting each country's legislation to determine whether to require fixation on choreographed works. On the other hand, the United States, France and the United Kingdom are demanding that it be fixed. Although choreography is at the center of K-pop and the value and influence of K-pop videos including cover dance through new media are discussed from various perspectives, copyright on choreography that needs to be resolved in business platforms for K-pop scalability The fact that there is such a big difference in problem perception is an area where we must not lose our vigilance. As the development of today's technology, the method of fixing a choreography looks very easy as an image, but at the same time can be stolen very quickly. Therefore, compared to overseas cases, it is urgent to improve the difference in perception of copyright registration for K-pop choreography and to supplement the system include the NFT.

Change Attention based Dense Siamese Network for Remote Sensing Change Detection (원격 탐사 변화 탐지를 위한 변화 주목 기반의 덴스 샴 네트워크)

  • Hwang, Gisu;Lee, Woo-Ju;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.14-25
    • /
    • 2021
  • Change detection, which finds changes in remote sensing images of the same location captured at different times, is very important because it is used in various applications. However, registration errors, building displacement errors, and shadow errors cause false positives. To solve these problems, we propose a novle deep convolutional network called CADNet (Change Attention Dense Siamese Network). CADNet uses FPN (Feature Pyramid Network) to detect multi-scale changes, applies a Change Attention Module that attends to the changes, and uses DenseNet as a feature extractor to use feature maps that contain both low-level and high-level features for change detection. CADNet performance measured from the Precision, Recall, F1 side is 98.44%, 98.47%, 98.46% for WHU datasets and 90.72%, 91.89%, 91.30% for LEVIR-CD datasets. The results of this experiment show that CADNet can offer better performance than any other traditional change detection method.

Development of Smart Medicine Management Application (스마트 약물 복용 관리 앱 개발)

  • Lee, Dong-Hyeon;Park, Yea-Jin;Hwang, Seok-Soon;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.313-318
    • /
    • 2021
  • In order to treat a disease, it is necessary to take the medication on time, but many people often violate or forget the time they take the medicine. Applications are emerging to solve these problems using information technology. However, for existing applications, it is difficult to use because it provides only a notification functions, user interface is inconvenient, and photo registration of the medication is impossible. To solve these problems, the study developed a smart medicine management application that allows users to set up their taking routines, check if they are taking them, search hospitals and pharmacies, and attach images of medicines they are taking. Through this appliaction, it is possible to reduce the frequency of forgetting the time taken and to take accurate medication by checking the actual image. It also supports the setting of a taking routine to support multiple medications with different taking cycles. It can also provide information about hospital and pharmacies close to their current location to increase access to hospital and pharmacies.

Development of an Automatic 3D Coregistration Technique of Brain PET and MR Images (뇌 PET과 MR 영상의 자동화된 3차원적 합성기법 개발)

  • Lee, Jae-Sung;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Park, Kwang-Suk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.414-424
    • /
    • 1998
  • Purpose: Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Materials and Methods: Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET to coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Results: Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Conclusion: Our refined technique could practically enhance the performance of automated three dimensional coregistration.

  • PDF

Rotation Errors of Breast Cancer on 3D-CRT in TomoDirect (토모다이렉트 3D-CRT을 이용한 유방암 환자의 회전 오차)

  • Jung, Jae Hong;Cho, Kwang Hwan;Moon, Seong Kwon;Bae, Sun Hyun;Min, Chul Kee;Kim, Eun Seog;Yeo, Seung-Gu;Choi, Jin Ho;Jung, Joo-Yong;Choe, Bo Young;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • The purpose of this study was to analyze the rotational errors of roll, pitch, and yaw in the whole breast cancer treated by the three-dimensional radiation therapy (3D-CRT) using TomoDirect (TD). Twenty-patient previously treated with TD 3D-CRT was selected. We performed a retrospective clinical analysis based on 80 images of megavoltage computed tomography (MVCT) including the systematic and random variation with patient setup errors and treatment setup margin (mm). In addition, a rotational error (degree) for each patient was analyzed using the automatic image registration. The treatment margin of X, Y, and Z directions were 4.2 mm, 6.2 mm, and 6.4 mm, respectively. The mean value of the rotational error for roll, pitch, and yaw were $0.3^{\circ}$, $0.5^{\circ}$, $0.1^{\circ}$, and all of systematic and random error was within $1.0^{\circ}$. The errors of patient positioning with the Y and Z directions have generally been mainly higher than the X direction. The percentage in treatment fractions in less than $2^{\circ}$ at roll, pitch, and yaw are 95.1%, 98.8%, and 97.5%, respectively. However, the edge of upper and lower (i.e., bottom) based on the center of therapy region (point) will quite a possibility that it is expected to twist even longer as the length of treatment region. The patient-specific characters should be considered for the accuracy and reproducibility of treatment and it is necessary to confirm periodically the rotational errors, including patient repositioning and repeating MVCT scan.

Diagnosis of Ictal Hyperperfusion Using Subtraction Image of Ictal and Interictal Brain Perfusion SPECT (발작기와 발작간기 뇌 관류 SPECT 감산영상을 이용한 간질원인 병소 진단)

  • Lee, Dong Soo;Seo, Jong-Mo;Lee, Jae Sung;Lee, Sang-Kun;Kim, Hyun Jip;Chung, June-Key;Lee, Myung Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.1
    • /
    • pp.20-31
    • /
    • 1998
  • A robust algorithm to disclose and display the difference of ictal and interictal perfusion may facilitate the detection of ictal hyperfusion foci. Diagnostic performance of localizing epileptogenic zones with subtracted SPECT images was compared with the visual diagnosis using ictal and interictal SPECT, MR, or PET. Ietal and interictal Tc-99m-HMPAO cerebral perfusion SPECT images of 48 patients(pts) were processed to get parametric subtracted images. Epileptogenic foci of all pts were diagnosed by seizure free state after resection of epileptogenic zones. In subtraction SPECT, we used normalized difference ratio of pixel counts(ictal-interictal)/interictal ${\times}100%$) after correcting coordinates of ictal and interictal SPECT in semi-automatized 3-dimensional fashion. We found epileptogenic zones in subtraction SPECT and compared the performance with visual diagnosis of ictal and interictal SPECT, MR and PET using post-surgical diagnosis as gold standard. The concordance of subtraction SPECT and ictal-interictal SPECT was moderately good(kappa=0.49). The sensitivity of ictal-interictal SPECT was 73% and that of subtraction SPECT 58%. Positive predictive value of ictal-interictal SPECT was 76% and that of subtraction SPECT was 64%. There was no statistical difference between sensitivity or positive predictive values of subtraction SPECT and ictal-interictal SPECT, MR or PET. Such was also the case when we divided patients into temporal lobe epilepsy and neocortical epilepsy. We conclude that subtraction SPECT we produced had equivalent diagnostic performance compared with ictal-interictal SPECT in localizing epileptogenic zones. Additional value of these subtraction SPECT in clinical interpretation of ictal and interictal SPECT should be further evaluated.

  • PDF

Mixed Mobile Education System using SIFT Algorithm (SIFT 알고리즘을 이용한 혼합형 모바일 교육 시스템)

  • Hong, Kwang-Jin;Jung, Kee-Chul;Han, Eun-Jung;Yang, Jong-Yeol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • Due to popularization of the wireless Internet and mobile devices the infrastructure of the ubiquitous environment, where users can get information whatever they want anytime and anywhere, is created. Therefore, a variety of fields including the education studies methods for efficiency of information transmission using on-line and off-line contents. In this paper, we propose the Mixed Mobile Education system(MME) that improves educational efficiency using on-line and off-line contents on mobile devices. Because it is hard to input new data and cannot use similar off-line contents in systems used additional tags, the proposed system does not use additional tags but recognizes of-line contents as we extract feature points in the input image using the mobile camera. We use the Scale Invariant Feature Transform(SIFT) algorithm to extract feature points which are not affected by noise, color distortion, size and rotation in the input image captured by the low resolution camera. And we use the client-server architecture for solving the limited storage size of the mobile devices and for easily registration and modification of data. Experimental results show that compared with previous work, the proposed system has some advantages and disadvantages and that the proposed system has good efficiency on various environments.

  • PDF

Current Status and Results of In-orbit Function, Radiometric Calibration and INR of GOCI-II (Geostationary Ocean Color Imager 2) on Geo-KOMPSAT-2B (정지궤도 해양관측위성(GOCI-II)의 궤도 성능, 복사보정, 영상기하보정 결과 및 상태)

  • Yong, Sang-Soon;Kang, Gm-Sil;Huh, Sungsik;Cha, Sung-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1235-1243
    • /
    • 2021
  • Geostationary Ocean Color Imager 2 (GOCI-II) on Geo-KOMPSAT-2 (GK2B)satellite was developed as a mission successor of GOCI on COMS which had been operated for around 10 years since launch in 2010 to observe and monitor ocean color around Korean peninsula. GOCI-II on GK2B was successfully launched in February of 2020 to continue for detection, monitoring, quantification, and prediction of short/long term changes of coastal ocean environment for marine science research and application purpose. GOCI-II had already finished IAC and IOT including early in-orbit calibration and had been handed over to NOSC (National Ocean Satellite Center) in KHOA (Korea Hydrographic and Oceanographic Agency). Radiometric calibration was periodically conducted using on-board solar calibration system in GOCI-II. The final calibrated gain and offset were applied and validated during IOT. And three video parameter sets for one day and 12 video parameter sets for a year was selected and transferred to NOSC for normal operation. Star measurement-based INR (Image Navigation and Registration) navigation filtering and landmark measurement-based image geometric correction were applied to meet the all INR requirements. The GOCI2 INR software was validated through INR IOT. In this paper, status and results of IOT, radiometric calibration and INR of GOCI-II are analysed and described.