• Title/Summary/Keyword: image registration

Search Result 516, Processing Time 0.032 seconds

Deformable image registration in radiation therapy

  • Oh, Seungjong;Kim, Siyong
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.101-111
    • /
    • 2017
  • The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

Image Registration Improvement Based-on FFT Techniques with the Affine Transform Estimation

  • Wisetphanichkij, Sompong;Pasomkusolsil, Sanchaiya;Dejhan, Kobchai;Cheevasuvit, Fusak;Mitatha, Somsak;Sra-Ium, Napat;Vorrawat, Vinai;Pienvijarnpong, Chanchai
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.260-262
    • /
    • 2003
  • New Image registration techniques are developed for determining geometric distortions between two images of the same scene. First, the properties of the Fourier transform of a two dimensional function under the affine transformation are given. As a result, techniques for the estimation of the coefficients of the distortion model using the spectral frequency information are developed. Image registration can be achieved by applying the fast Fourier transform (FFT) technique for cross correlation of misregistered imagery to determine spatial distances. The correlation results may be rather broad, making detection of the peak difficult, what can be suppressed by enhancing cross-correlation technique. Yield greatly improves the delectability and high precision of image misregistration.

  • PDF

Registration and Visualization of Medical Image Using Conditional Entropy and 3D Volume Rendering (조건부 엔트로피와 3차원 볼륨 렌더링기법을 이용한 의료영상의 정합과 가시화)

  • Kim, Sun-Worl;Cho, Wan-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.277-286
    • /
    • 2009
  • Image registration is a process to establish the spatial correspondence between images of the same scene, which are acquired at different view points, at different times, or by different sensors. In this paper, we introduce a robust brain registration technique for correcting the difference between two temporal images by the different coordinate systems in MR and CT image obtained from the same patient. Two images are registered where this measure is minimized using a modified conditional entropy(MCE: Modified Conditional Entropy) computed from the joint histograms for the intensities of two given images, we conduct the rendering for visualization of 3D volume image.

Feature Based Multi-Resolution Registration of Blurred Images for Image Mosaic

  • Fang, Xianyong;Luo, Bin;He, Biao;Wu, Hao
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.37-46
    • /
    • 2010
  • Existing methods for the registration of blurred images are efficient for the artificially blurred images or a planar registration, but not suitable for the naturally blurred images existing in the real image mosaic process. In this paper, we attempt to resolve this problem and propose a method for a distortion-free stitching of naturally blurred images for image mosaic. It adopts a multi-resolution and robust feature based inter-layer mosaic together. In each layer, Harris corner detector is chosen to effectively detect features and RANSAC is used to find reliable matches for further calibration as well as an initial homography as the initial motion of next layer. Simplex and subspace trust region methods are used consequently to estimate the stable focal length and rotation matrix through the transformation property of feature matches. In order to stitch multiple images together, an iterative registration strategy is also adopted to estimate the focal length of each image. Experimental results demonstrate the performance of the proposed method.

A Study on the Image Registration Algorithms for the Accurate Application of Multimodality Image in Radiation Treatment Planning (방사선치료 계획시 다중영상 활용의 정확도 향상을 위한 영상정합 알고리즘 분석)

  • 송주영;이형구;최보영;윤세철;서태석
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.209-217
    • /
    • 2002
  • There have been many studies on the application of the reciprocal advantages of multimodality image to define accurate target volume in the Process of radiation treatment planning. For the proper use of the multimodality images, the registration works between different modality images should be performed in advance. In this study, we selected chamfer matching method and mutual information method as most popular methods in recent image registration studies considering the registration accuracy and clinical practicality. And the two registration methods were analyzed to deduce the optimal registration method according to the characteristics of images. Lung phantom of which multimodality images could be acquired was fabricated and CT, MRI and SPECT images of the phantom were used in this study. We developed the registration program which can perform the two registration methods properly and analyzed the registration results which were produced by the developed program in many different images' conditions. Although the overall accuracy of the registration in both chamfer matching method and mutual information method was acceptable, the registration errors in SPECT images which had lower resolution and in degraded images of which data were removed in some part were increased when chamfer matching method was applied. Especially in the case of degraded reference image, chamfer matching methods produce relatively large errors compared with mutual information method. Mutual information method can be estimated as more robust registration method than chamfer matching method in this study because it did not need the prerequisite works, the extraction of accurate contour points, and it produced more accurate registration results consistently regardless of the images' characteristics. The analysis of the registration methods in this study can be expected to provide useful information to the utilization of multimodality images in delineating target volume for radiation treatment planning and in many other clinical applications.

  • PDF

Numerical Algorithms of Image Registration for Intra-Cavity Surgical Robots (인체 공동 내부 수술용 로봇을 위한 이미지기반 레지스트레이션 알고리즘)

  • Lee, Sang-Yoon;Shin, Seung-Ha;An, Jae-Bum;Joo, Jin-Man
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.714-719
    • /
    • 2004
  • This paper presents two numerical algorithms for registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using geometrical information from helix or line fiducials. The registration algorithms are designed to be used for a surgical robot working inside cavities of human body. A cylindrical device with a combination of line and helix fiducials were also devised and is supposed to be attached to the end-effector of surgical robot. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results indicate excellent overall registration accuracy.

  • PDF

Image Registration for Cloudy KOMPSAT-2 Imagery Using Disparity Clustering

  • Kim, Tae-Young;Choi, Myung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • KOMPSAT-2 like other high-resolution satellites has the time and angle difference in the acquisition of the panchromatic (PAN) and multispectral (MS) images because the imaging systems have the offset of the charge coupled device combination in the focal plane. Due to the differences, high altitude and moving objects, such as clouds, have a different position between the PAN and MS images. Therefore, a mis-registration between the PAN and MS images occurs when a registration algorithm extracted matching points from these cloud objects. To overcome this problem, we proposed a new registration method. The main idea is to discard the matching points extracted from cloud boundaries by using an automatic thresholding technique and a classification technique on a distance disparity map of the matching points. The experimental result demonstrates the accuracy of the proposed method at ground region around cloud objects is higher than a general method which does not consider cloud objects. To evaluate the proposed method, we use KOMPSAT-2 cloudy images.

Medical Image Registration by Combining Gradient Vector Flow and Conditional Entropy Measure (기울기 벡터장과 조건부 엔트로피 결합에 의한 의료영상 정합)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Kim, Sun-Worl;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.303-308
    • /
    • 2010
  • In this paper, we propose a medical image registration technique combining the gradient vector flow and modified conditional entropy. The registration is conducted by the use of a measure based on the entropy of conditional probabilities. To achieve the registration, we first define a modified conditional entropy (MCE) computed from the joint histograms for the area intensities of two given images. In order to combine the spatial information into a traditional registration measure, we use the gradient vector flow field. Then the MCE is computed from the gradient vector flow intensity (GVFI) combining the gradient information and their intensity values of original images. To evaluate the performance of the proposed registration method, we conduct experiments with our method as well as existing method based on the mutual information (MI) criteria. We evaluate the precision of MI- and MCE-based measurements by comparing the registration obtained from MR images and transformed CT images. The experimental results show that the proposed method is faster and more accurate than other optimization methods.

Fast Marker-based Registration of 3D CT and 2D X-ray Fluoroscopy Images (3차원 전산화 단층촬영영상과 2차원 X-선 투시영상간 표식기 기반 고속 정합)

  • Kim Gye-Hyun;Park Seong-Jin;Hong He-Len;Shin Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.3
    • /
    • pp.335-343
    • /
    • 2006
  • This paper proposes a novel technique of marker-based 2D-3D registration to combine 3D information obtained from preoperative CT images into 2D image obtained from intraoperative x-ray fluoroscopy image. Our method is divided into preoperative and intraoperative procedures. In preoperative procedure, we generate CT-derived DRRs using graphics hardware and detect markers automatically. In intraoperative procedure, we propose a hierarchical two- step registration to reduce a degree of freedom from 6-DOP to 2-DOF which is composed of in-plane registration using principal axis method and out-plane registration using minimal error searching method in spherical coordinate. For experimentation, we use cardiac phantom datasets with confirmation markers and evaluate our method in the aspects of visual inspection, accuracy and processing time. As experimental results, our method keeps accuracy and aligns very fast by reducing real-time computations.

Automated patient set-up using intensity based image registration in proton therapy (양성자 치료 시 Intensity 기반의 영상 정합을 이용한 환자 자동화 Set up 적용 방법)

  • Jang, Hoon;Kim, Ho Sik;Choe, Seung Oh;Kim, Eun Suk;Jeong, Jong Hyi;Ahn, Sang Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.97-105
    • /
    • 2018
  • Purpose : Proton Therapy using Bragg-peak, because it has distinct characteristics in providing maximum dosage for tumor and minimal dosage for normal tissue, a medical imaging system that can quantify changes in patient position or treatment area is of paramount importance to the treatment of protons. The purpose of this research is to evaluate the usefulness of the algorithm by comparing the image matching through the set-up and in-house code through the existing dips program by producing a Matlab-based in-house registration code to determine the error value between dips and DRR to evaluate the accuracy of the existing treatment. Materials and Methods : Thirteen patients with brain tumors and head and neck cancer who received proton therapy were included in this study and used the DIPS Program System (Version 2.4.3, IBA, Belgium) for image comparison and the Eclipse Proton Planning System (Version 13.7, Varian, USA) for patient treatment planning. For Validation of the Registration method, a test image was artificially rotated and moved to match the existing image, and the initial set up image of DIPS program of existing set up process was image-matched with plan DRR, and the error value was obtained, and the usefulness of the algorithm was evaluated. Results : When the test image was moved 0.5, 1, and 10 cm in the left and right directions, the average error was 0.018 cm. When the test image was rotated counterclockwise by 1 and $10^{\circ}$, the error was $0.0011^{\circ}$. When the initial images of four patients were imaged, the mean error was 0.056, 0.044, and 0.053 cm in the order of x, y, and z, and 0.190 and $0.206^{\circ}$ in the order of rotation and pitch. When the final images of 13 patients were imaged, the mean differences were 0.062, 0.085, and 0.074 cm in the order of x, y, and z, and 0.120 cm as the vector value. Rotation and pitch were 0.171 and $0.174^{\circ}$, respectively. Conclusion : The Matlab-based In-house Registration code produced through this study showed accurate Image matching based on Intensity as well as the simple image as well as anatomical structure. Also, the Set-up error through the DIPS program of the existing treatment method showed a very slight difference, confirming the accuracy of the proton therapy. Future development of additional programs and future Intensity-based Matlab In-house code research will be necessary for future clinical applications.

  • PDF