• Title/Summary/Keyword: image of science

Search Result 9,881, Processing Time 0.069 seconds

The Effect of Media Image and Major Satisfaction on Nurse Image of Health and Non-health Students after COVID-19 (COVID-19 이후 보건계열과 비보건계열 대학생의 대중매체 이미지와 전공만족도가 간호사 이미지에 미치는 영향)

  • Yunju Lee;Hyeseon Lee;Jieun Park;Bomin Kwon;Haeun Choi
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.107-115
    • /
    • 2022
  • The study attempted to identify the factors affecting the image of nurses in health and non-health university students after COVID-19. The study was collected from November 15, 2021 to 2011 and 28th, 2021, from 133 health-related and 123 non-health-related students in four universities. This data was analyzed by descriptive statistics, correlation, and multiple regression analysis using the SPSS 22.0 program. As a result of the study, whether the nurse image according to general characteristics is in the first grade of health-related college students(t=2.82, p=.006) showed a statistically significant difference. The nurse image of college students showed a positive correlation with the mass media image and major satisfaction in both health and non-health fields. For health-related college students, the image of mass media, major satisfaction, and first grade influence the image of nurses (F=40.42, p<.001)In the case of university students in non-health departments, it was found that only the media image affects the nurse image. (F=20.13, p<.001). In order to improve the image of nurses, it is necessary to have continuous interest in contact with the media through new media and to approach it systematically.

Adaptive Algorithm in Image Reconstruction Based on Information Geometry

  • Wang, Meng;Ning, Zhen Hu;Yu, Jing;Xiao, Chuang Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.461-484
    • /
    • 2021
  • Compressed sensing in image reconstruction has attracted attention and many studies are proposed. As we know, adding prior knowledge about the distribution of the support on the original signal to CS can improve the quality of reconstruction. However, it is still difficult for a recovery framework adjusts its strategy for exploiting the prior knowledge efficiently according to the current estimated signals in serial iterations. With the theory of information geometry, we propose an adaptive strategy based on the current estimated signal in each iteration of the recovery. We also improve the performance of existing algorithms through the adaptive strategy for exploiting the prior knowledge according to the current estimated signal. Simulations are presented to validate the results. In the end, we also show the application of the model in the image.

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

SDCN: Synchronized Depthwise Separable Convolutional Neural Network for Single Image Super-Resolution

  • Muhammad, Wazir;Hussain, Ayaz;Shah, Syed Ali Raza;Shah, Jalal;Bhutto, Zuhaibuddin;Thaheem, Imdadullah;Ali, Shamshad;Masrour, Salman
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Recently, image super-resolution techniques used in convolutional neural networks (CNN) have led to remarkable performance in the research area of digital image processing applications and computer vision tasks. Convolutional layers stacked on top of each other can design a more complex network architecture, but they also use more memory in terms of the number of parameters and introduce the vanishing gradient problem during training. Furthermore, earlier approaches of single image super-resolution used interpolation technique as a pre-processing stage to upscale the low-resolution image into HR image. The design of these approaches is simple, but not effective and insert the newer unwanted pixels (noises) in the reconstructed HR image. In this paper, authors are propose a novel single image super-resolution architecture based on synchronized depthwise separable convolution with Dense Skip Connection Block (DSCB). In addition, unlike existing SR methods that only rely on single path, but our proposed method used the synchronizes path for generating the SISR image. Extensive quantitative and qualitative experiments show that our method (SDCN) achieves promising improvements than other state-of-the-art methods.

The Improvement of Motion Compensation for a Moving Target Using the Gabor Wavelet Transform (Gabor Wavelet Transform을 이용한 움직이는 표적에 대한 움직임 보상 개선)

  • Shin, Seung-Yong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.913-919
    • /
    • 2006
  • This paper presents a technique for motion compensation of ISAR(Inverse SAR) images for a moving target. If a simple fourier transform is employed to obtain ISAR image for a moving target, the image is usually blurred. These images blurring problem can be solved with the time-frequency transform. In this paper, motion compensation algorithms of ISAR image such as STFT(Short Time Fourier Transform), GWT(Gabor Wavelet Transform) are described. In order to show the performances of each algorithm, we use scattering wave of the ideal point scatterers and simulated MIG-25 to obtain motion compensated ISAR image, and display the resolution of STFT and GWT ISAR image.

IMAGE SIMULATIONS OF THE KVN AND EAST ASIA VLBI FACILITIES WITH A SiO MASER MODEL IMAGE (KVN과 동아시아 VLBI 관측시설을 이용한 SiO 메이저 모델이미지 모의실험)

  • Yi, Ji-Yun;Jung, Tae-Hyun
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2010
  • We report results of image simulations of the KVN and VLBI experiments of the KVN with several other East Asia VLBI facilities. To investigate their imaging capability a model-generated image of 7 mm SiO maser emission in Mira variables is used. The resulting simulations show that the joint VLBI experiments of the KVN with East Asia VLBI facilities can produce reasonably good images at 7 mm spectral line experiments. However, there are no apparent differences in peak flux densities and images themselves in the simulations among different combinations of these facilities. In addition, the simulated images of observations which include bigger antennas do not show any expected improvement to the image sensitivity. The small variations in the peak flux density and similar image sensitivity, irrespective of different antenna sizes or numbers of baselines used in the simulations, turn out due to a specific characteristic of the adopted model image. Test simulations using another SiO maser image from R Cas observations prove that the participation of bigger antennas in the VLBI experiments does improve image sensitivity. We confirm the need of additional longer baselines in the experiments of the East Asia VLBI facilities to study very compact maser clumps on sub-milliarcsecond scales.

Visualization of Elastic Waves Propagating on a Solid Surface with Fatigue Cracks by Laser Ultrasonic Technology

  • Imade, Masaaki;Miyauchi, Hidekazu;Okada, Saburo;Yamamoto, Shigeyuki;Takatsubo, Jyunji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.109.4-109
    • /
    • 2001
  • We have developed a laser ultrasonic system for visualization of elastic waves propagating on a solid surface, in order to visualize ultrasonic waves propagating on opaque media. This system can produce a series of successive images as an animation of wave propagation, because of scanning an optical heterodyne probe to measure surface transient displacements. Using this visualization technique, we observed the scattering and diffraction of ultrasonic waves around various shapes of artificial defects, and examined its application to nondestructive inspection. This imaging system provides various kinds of visualization images such as propagation image, amplitude image, arrival time image and velocity image. We have been confident that this technique is available for nondestructive inspection and materials ...

  • PDF

The Study of Self Image according to Body Mass Index in Middle School Students (중학생의 비만도에 따른 자아상 연구)

  • Song, Min-Sun;Yoo, Yong-Kwon;Choi, Chan-Hun;Kim, Nam-Cho
    • Journal of Korean Biological Nursing Science
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2012
  • Purpose: The purpose of this study was to identify the self image according to body mass index in middle school students. Methods: The study included 260 students. Self image was measured using structured questionnaires. Statistical analysis was performed using t-test, ANOVA, Scheffe's test and multiple regression analysis. Results: The proportions of under weight, normal weight, and overweight were 36.1%, 53.9%, 10.0% respectively. Also, the mean of the self image score was 4.0. The score of self image was significantly higher in the normal weight group than the over weight group or the under weight group. This trend was also consistent in multiple regression. The score of self image was lower in high school grades, low perceived record, under-weight and over-weight. Conclusion: This study shows that many students are under weight. The score of self image was related with body image. So, level of obesity in each student should also be considered, to elevate the self image.

Optimum Image Compression Rate Maintaining Diagnostic Image Quality of Digital Intraoral Radiographs

  • Song Ju-Seop;Koh Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.265-274
    • /
    • 2000
  • Purpose: The aims of the present study are to determine the optimum compression rate in terms of file size reduction and diagnostic quality of the images after compression and evaluate the transmission speed of original or each compressed image. Materials and Methods: The material consisted of 24 extracted human premolars and molars. The occlusal surfaces and proximal surfaces of the teeth had a clinical disease spectrum that ranged from sound to varying degrees of fissure discoloration and cavitation. The images from Digora system were exported in TIFF and the images from conventional intraoral film were scanned and digitalized in TIFF by Nikon SF-200 scanner (Nikon, Japan). And six compression factors were chosen and applied on the basis of the results from a pilot study. The total number of images to be assessed were 336. Three radiologists assessed the occlusal and proximal surfaces of the teeth with 5-rank scale. Finally diagnosed as either sound or carious lesion by one expert oral pathologist. And sensitivity, specificity and k value for diagnostic agreement was calculated. Also the area (Az) values under the ROC curve were calculated and paired t-test and oneway ANOVA test was performed. Thereafter, transmission time of the image files of the each compression level was compared with that of the original image files. Results: No significant difference was found between original and the corresponding images up to 7% (1 : 14) compression ratio for both the occlusal and proximal caries (p<0.05). JPEG3 (1 : 14) image files are transmitted fast more than 10 times, maintained diagnostic information in image, compared with original image files. Conclusion: 1 : 14 compressed image file may be used instead of the original image and reduce storage needs and transmission time.

  • PDF