• Title/Summary/Keyword: image noise

Search Result 3,359, Processing Time 0.04 seconds

The Extraction of ROI(Region Of Interest)s Using Noise Filtering Algorithm Based on Domain Heuristic Knowledge in Breast Ultrasound Image (유방 초음파 영상에서 도메인 경험 지식 기반의 노이즈 필터링 알고리즘을 이용한 ROI(Region Of Interest) 추출)

  • Koo, Lock-Jo;Jung, In-Sung;Choi, Sung-Wook;Park, Hee-Boong;Wang, Gi-Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.1
    • /
    • pp.74-82
    • /
    • 2008
  • The objective of this paper is to remove noises of image based on the heuristic noises filter and to extract a tumor region by using morphology techniques in breast ultrasound image. Similar objective studies have been conducted based on ultrasound image of high resolution. As a result, efficiency of noise removal is not fine enough for low resolution image. Moreover, when ultrasound image has multiple tumors, the extraction of ROI (Region Of Interest) is not accomplished or processed by a manual selection. In this paper, our method is done 4 kinds of process for noises removal and the extraction of ROI for solving problems of restrictive automated segmentation. First process is that pixel value is acquired as matrix type. Second process is a image preprocessing phase that is aimed to maximize a contrast of image and prevent a leak of personal information. In next process, the heuristic noise filter that is based on opinion of medical specialist is applied to remove noises. The last process is to extract a tumor region by using morphology techniques. As a result, the noise is effectively eliminated in all images and a extraction of tumor regions is possible though one ultrasound image has several tumors.

Edge Preserving Speckle Reduction of Ultrasound Image with Morphological Adaptive Median Filtering

  • Ryu, Kwang-Ryol;Jung, Eun-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.535-538
    • /
    • 2009
  • Speckle noise reduction for ultrasound CT image using morphological adaptive median filtering based on edge preservation is presented in this paper. Speckle noise is multiplicative feature and causes ultrasound image to degrade widely from transducer. An input image is classified into edge region and homogeneous region in preprocessing. The speckle is reduced by morphological operation on the 2D gray scale by using convolution and correlation, and edges are preserved. The adaptive median is processed to reduce an impulse noise to preserve edges. As the result, MAM of the proposed method enhances the image to about 10% in comparison with Winner filter by Edge Preservation Index and PSNR, and 10% to only adaptive median filtering.

Measurement of noise characteristics of an image sensor (화상센서의 잡음 특성 측정)

  • Lee, Tae-Kyoung;Hahn, Jae-Won
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • We setup the system to measure the noise characteristics of the 5M complementary metal-oxide semiconductor (CMOS) image sensor by generic measurement indicator of Standard mobile imaging architecture (SMIA) which is one of internal standard of mobile imaging architecture. To evaluate the effect of environment and setting parameters, such as temperature and integration time, we measure the variation of the dark signal, dynamic range and fixed pattern noise of image sensor. We also detect the number of defective pixels and cluster defects defined as adjacent single defect pixels at 5M CMOS image sensor. Then, we find the existence of some cluster defects in experiment, which are not expected in calculation.

  • PDF

A Study on the Modified Mean Filter Algorithm for Removal AWGN (AWGN 제거를 위한 변형된 평균 필터 알고리즘에 관한 연구)

  • Long, Xu;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.792-794
    • /
    • 2014
  • In the modern society where the communication technology has rapidly developed, image devices such as digital display, camera, etc., forms the center. However, during the transmission of image data, storing, and obtaining, a noise is added to the image due to various reasons and degrades the quality of the image. In this paper, an average filter algorithm modified in order to ease the effect of AWGN(additive white Gaussian noise) being added to the image was proposed. Also compare existing methods through the using PSNR.

  • PDF

A Study on Image Reconstructing Algorithm in Uniformly Distributed Impulsive Noise Environment (균등 분포된 임펄스 잡음 환경에서의 영상 복원 알고리즘에 관한 연구)

  • Noh Hyun-Yong;Bae Sang-Bum;Kim Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1001-1004
    • /
    • 2006
  • Many researches have been processed to reconstruct corrupted an image by noise in fields of signal processing such as image recognition and compute. vision, and AWGN(additive white gaussian noise) and impulse noise are representative. Impulse noise consists of fired-valued(salt & pepper) impulse noise and random-valued impulse noise, and non-linear filters such as SM(standard median) filters are used to remove this noise. But basic SM filters still generate many errors in edge regions of an image, and in order to overcome this problem a variety of methods have been researched. In this paper, we proposed an impulse noise removal algorithm which is superior to the edge preserving capacity. At this tine, after detecting a noise by using the noise detector, we applied a noise removal algorithm based on the min-max operation and compared the capacity with existing methods through simulation.

  • PDF

Noise Analysis of Nonlinear Image Sensor Model with Application to SNR Estimation (위성용 카메라 비선형 모델의 잡음 특성 분석과 영상 신호-잡음비(Image SNR) 분포도 계산)

  • Myung, Hwan-Chun;Lee, Sang-Kon
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.58-65
    • /
    • 2009
  • The paper identifies noise characteristics of a nonliner image sensor model which reflects a saturation effect of each detector pixel and extends the result to estimate an image SNR (Signla-to-Noise Ratio) distribution over all the pixels in a detector. In particular, nonlinearity of a pixel is studied from two perspectives of including asymmetry of a noise PDF (Probability Distribution Function) and enhancing a pixel SNR value, in comparison to a linear model. It is noted that the proposed image SNR distribution function is useful to effectively select new optimal operation parameter values: an integration time and an pixel-summing number, even after a launch campaign, assuming sensor gain degradation in orbit or inevitable modification of some operation parameter values due to space contingency.

  • PDF

Effective Noise Reduction using STFT-based Content Analysis (STFT 기반 영상분석을 이용한 효과적인 잡음제거 알고리즘)

  • Baek, Seungin;Jeong, Soowoong;Choi, Jong-Soo;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.145-155
    • /
    • 2015
  • Noise reduction has been actively studied in the digital image processing and recently, block-based denoising algorithms are widely used. In particular, a low rank approximation employing WNNM(Weighted Nuclear Norm Minimization) and block-based approaches demonstrated the potential for effective noise reduction. However, the algorithm based on low rank a approximation generates the artifacts in the image restoration step. In this paper, we analyzes the image content using the STFT(Short Time Fourier Transform) and proposes an effective method of minimizing the artifacts generated from the conventional algorithm. To evaluate the performance of the proposed scheme, we use the test images containing a wide range of noise levels and compare the results with the state-of-art algorithms.

Magnetic Resonance Brain Image Contrast Enhancement Using Histogram Equalization Techniques (히스토그램 평형 기법을 이용한 자기 공명 두뇌 영상 콘트라스트 향상)

  • Ullah, Zahid;Lee, Su-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.83-86
    • /
    • 2019
  • Histogram equalization is extensively used for image contrast enhancement in various applications due to its effectiveness and its modest functions. In image research, image enhancement is one of the most significant and arduous technique. The image enhancement aim is to improve the visual appearance of an image. Different kinds of images such as satellite images, medical images, aerial images are affected from noise and poor contrast. So it is important to remove the noise and improve the contrast of the image. Therefore, for this purpose, we apply a median filter on MR image as the median filter remove the noise and preserve the edges effectively. After applying median filter on MR image we have used intensity transformation function on the filtered image to increase the contrast of the image. Than applied the histogram equalization (HE) technique on the filtered image. The simple histogram equalization technique over enhances the brightness of the image due to which the important information can be lost. Therefore, adaptive histogram equalization (AHE) and contrast limited histogram equalization (CLAHE) techniques are used to enhance the image without losing any information.

  • PDF

An Effective Denoising Method for Images Contaminated with Mixed Noise Based on Adaptive Median Filtering and Wavelet Threshold Denoising

  • Lin, Lin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.539-551
    • /
    • 2018
  • Images are unavoidably contaminated with different types of noise during the processes of image acquisition and transmission. The main forms of noise are impulse noise (is also called salt and pepper noise) and Gaussian noise. In this paper, an effective method of removing mixed noise from images is proposed. In general, different types of denoising methods are designed for different types of noise; for example, the median filter displays good performance in removing impulse noise, and the wavelet denoising algorithm displays good performance in removing Gaussian noise. However, images are affected by more than one type of noise in many cases. To reduce both impulse noise and Gaussian noise, this paper proposes a denoising method that combines adaptive median filtering (AMF) based on impulse noise detection with the wavelet threshold denoising method based on a Gaussian mixture model (GMM). The simulation results show that the proposed method achieves much better denoising performance than the median filter or the wavelet denoising method for images contaminated with mixed noise.

Salt and Pepper Noise Removal using Neighborhood Pixels (이웃한 픽셀을 이용한 Salt and Pepper 잡음제거)

  • Baek, Ji-Hyeoun;Kim, Chul-Ki;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.217-219
    • /
    • 2019
  • In response to the increased use of digital video device, more researches are actively made on the image processing technologies. Image processing is practically used on various applied fields such as medical photographic interpretation, and object recognition. The types of image noise include Gaussian Noise, Impulse Noise, and Salt and Pepper. Noise refers to the unnecessary information which damages the video and the noise is mainly removed by a filter. Typical noise removal methods are Median Filter and Average Filter. While Median Filter is effective for removing Salt and Pepper noise, the noise removal performance is relatively lower in the environment with high noise density. To address such issue, this study suggested an algorithm which utilizes neighboring pixels to remove noise.

  • PDF