• Title/Summary/Keyword: image details

Search Result 515, Processing Time 0.026 seconds

GAN-Based Local Lightness-Aware Enhancement Network for Underexposed Images

  • Chen, Yong;Huang, Meiyong;Liu, Huanlin;Zhang, Jinliang;Shao, Kaixin
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.575-586
    • /
    • 2022
  • Uneven light in real-world causes visual degradation for underexposed regions. For these regions, insufficient consideration during enhancement procedure will result in over-/under-exposure, loss of details and color distortion. Confronting such challenges, an unsupervised low-light image enhancement network is proposed in this paper based on the guidance of the unpaired low-/normal-light images. The key components in our network include super-resolution module (SRM), a GAN-based low-light image enhancement network (LLIEN), and denoising-scaling module (DSM). The SRM improves the resolution of the low-light input images before illumination enhancement. Such design philosophy improves the effectiveness of texture details preservation by operating in high-resolution space. Subsequently, local lightness attention module in LLIEN effectively distinguishes unevenly illuminated areas and puts emphasis on low-light areas, ensuring the spatial consistency of illumination for locally underexposed images. Then, multiple discriminators, i.e., global discriminator, local region discriminator, and color discriminator performs assessment from different perspectives to avoid over-/under-exposure and color distortion, which guides the network to generate images that in line with human aesthetic perception. Finally, the DSM performs noise removal and obtains high-quality enhanced images. Both qualitative and quantitative experiments demonstrate that our approach achieves favorable results, which indicates its superior capacity on illumination and texture details restoration.

Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions

  • Kim, Yong-Hyun;Eo, Yang-Dam;Kim, Youn-Soo;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.497-505
    • /
    • 2011
  • Image fusion is a technical method to integrate the spatial details of the high-resolution panchromatic (HRP) image and the spectral information of low-resolution multispectral (LRM) images to produce high-resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high-quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity-hue-saturation and wavelet-based methods.

WDENet: Wavelet-based Detail Enhanced Image Denoising Network (Wavelet 기반의 영상 디테일 향상 잡음 제거 네트워크)

  • Zheng, Jun;Wee, Seungwoo;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.725-737
    • /
    • 2021
  • Although the performance of cameras is gradually improving now, there are noise in the acquired digital images from the camera, which acts as an obstacle to obtaining high-resolution images. Traditionally, a filtering method has been used for denoising, and a convolutional neural network (CNN), one of the deep learning techniques, has been showing better performance than traditional methods in the field of image denoising, but the details in images could be lost during the learning process. In this paper, we present a CNN for image denoising, which improves image details by learning the details of the image based on wavelet transform. The proposed network uses two subnetworks for detail enhancement and noise extraction. The experiment was conducted through Gaussian noise and real-world noise, we confirmed that our proposed method was able to solve the detail loss problem more effectively than conventional algorithms, and we verified that both objective quality evaluation and subjective quality comparison showed excellent results.

X-Ray Image Enhancement Using a Boundary Division Wiener Filter and Wavelet-Based Image Fusion Approach

  • Khan, Sajid Ullah;Chai, Wang Yin;See, Chai Soo;Khan, Amjad
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • To resolve the problems of Poisson/impulse noise, blurriness, and sharpness in degraded X-ray images, a novel and efficient enhancement algorithm based on X-ray image fusion using a discrete wavelet transform is proposed in this paper. The proposed algorithm consists of two basics. First, it applies the techniques of boundary division to detect Poisson and impulse noise corrupted pixels and then uses the Wiener filter approach to restore those corrupted pixels. Second, it applies the sharpening technique to the same degraded X-ray image. Thus, it has two source X-ray images, which individually preserve the enhancement effects. The details and approximations of these sources X-ray images are fused via different fusion rules in the wavelet domain. The results of the experiment show that the proposed algorithm successfully combines the merits of the Wiener filter and sharpening and achieves a significant proficiency in the enhancement of degraded X-ray images exhibiting Poisson noise, blurriness, and edge details.

Regional Dynamic Range Histogram Equalization for Image Enhancement (국부영역의 동적범위 변화를 이용한 영상 개선 알고리즘)

  • Lee Eui-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.101-109
    • /
    • 2004
  • Image enhancement for Infrared imaging system is mainly based on the global histogram equalization. The global histogram equalization(GHE) is a method in which each pixel is equalized by using a whole histogram of an image. GHE is speedy and effective for real-time imaging system but its method fails to enhance the fine details. On the other hand, the basic local histogram equalization(LHE) method uses sliding a window and. the pixels under the window region are equalized over the whole output dynamic range. The LHE is adequate to enhance the fine details. But this method is computationally slow and noises are over-enhanced. So various local histogram equalization methods have been already presented to overcome these problems of LHE. In this paper, a new regional dynamic range histogram equalization (RDRHE) is presented. RDRHE improves the equalization quality while reducing the computational burden.

An Iterative Image Restoration (화상의 반복 복원 처리)

  • 이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.8
    • /
    • pp.891-897
    • /
    • 1992
  • A local iterative Image restoration method Is Introduced that processes with varying iteration numbers according to the local statistics. In general almost of the Iterative method applies Its algorithm to the whole Image without considering the local pixel informations, which Is not so effective for the processing time. Usually the edges or details have an Important role In visual effect. So in this paper we process the edges or the details many times while In the flat region we just pass over or decrease iterations. This method shows good MSE (Mean Square Error) improvement, better subjective qualify and reduced processing time.

  • PDF

Efficient Median Filter Using Irregular Shape Window

  • Pok, Gou Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.601-607
    • /
    • 2018
  • Median filtering is a nonlinear method which is known to be effective in removing impulse noise while preserving local image structure relatively well. However, it could still suffer the smearing phenomena of edges and fine details into neighbors due to undesirable influence from the pixels whose values are far off from the true value of the pixel at hand. This drawback mainly comes from the fact that median filters typically employ a regular shape window for collecting the pixels used in the filtering operation. In this paper, we propose a median filtering method which employs an irregular shape filter window in collecting neighboring pixels around the pixel to be denoised. By employing an irregular shape window, we can achieve good noise suppression while preserving image details. Experimental results have shown that our approach is superior to regular window-based methods.

Geological Mapping using SWIR and VNIR Bands of ASTER Image Data

  • Shanmugam, Sanjeevi;Singaravelu, Jayaseelan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1230-1232
    • /
    • 2003
  • This study aims to extract maximum geological information using the ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) images of a part of south India. The area chosen for this study is characterized by rock types such as Migmatite, Magnetite Quartzite, Charnockite, Granite, dykes, Granitoid gneiss and Ultramafic rocks, and minerals such as Bauxite, Magnesite, Iron ores, Calcite etc. Advantage was taken of the characteristic reflectance and absorption phenomenon in the VNIR, SWIR and TIR bands for these rocks and minerals, and they were mapped in detail. Image processing methods such as contrast stretching, PC analysis, band ratios and fusion were used in this study. The results of the processing matched with the field details and showed additional details, thus demonstrating the usefulness of ASTER (especially the SWIR bands) data for better geological mapping.

  • PDF

An Entropy Masking Model for Image and Video Watermarking (영상 워터마킹을 위한 엔트로피 마스킹 모델)

  • Kim, Seong-Whan;Shan Suthaharan
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.491-496
    • /
    • 2003
  • We present a new watermark design tool for digital images and digital videos that are based on human visual system (HVS) characteristics. In this tool, basic mechanisms (inhibitory and excitatory behaviour of cells) of HVS are used to determine image dependent upper bound values on watermark insertion. This allows us to insert maximai allowable transparent watermark, which in turn is extremely hard to attack with common image processing, Motion Picture Experts Group (MPEG) compression. As the number of details (e.g. edges) increases in an image, the HVS decrease its sensitivity to the details. In the same manner, as the number of motion increases in a video signal, the HVS decrease its sensitivity to the motions. We model this decreased sensitivity to the details and motions as an (motion) entropy masking. Entropy masking model can be efficiently used to increase the robustness of image and video watermarks. We have shown that our entropy-masking model provides watermark scheme with increased transparency and henceforth increased robustness.

Detail Enhancement by Spatial Gamut Mapping Based on Local Contrast Compensation (지역적 대비를 보상하는 색역 사상을 통한 상세정보 향상)

  • Song, In-Yong;Ha, Ho-Gun;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.58-66
    • /
    • 2012
  • Currently many devices reproduce electronic images in the various ways. However, the color that is reproduced in any device is different from the original color due to the differences in the gamut between devices. A recent trend in gamut mapping algorithms is the use of spatial information to compute the color transformation of pixels from the input to the output gamut. However, these techniques share the problem of preserving details, and avoiding halos, and hue shift. In this paper, spatial gamut mapping for preserving the details of the input image is proposed. Our approach improves visibility of detail that is not effectively represented with conventional spatial gamut mapping. In proposed method, initially, we gamut map the input image using gamut clipping and obtain a detail layer for both the input and the gamut mapped images. Next, we calculate the difference between the two detail layers, obtaining the details of the out of gamut region. Finally, we add the details of out of gamut region to the gamut mapped image. Since the resulting image has out of gamut colors, we obtain resulting image of proposed method by using a gamut clipping method. Consequently, the printed output image was more consistent with the corresponding monitor image.