• 제목/요약/키워드: image context

검색결과 584건 처리시간 0.026초

건설현장의 프로세스 Context 추출을 위한 디지털 이미지 정보체계 구축 (An Information Framework for the Derivation of Process Context from Construction Site Digital Images)

  • 윤수원;진상윤
    • 한국건설관리학회논문집
    • /
    • 제6권2호
    • /
    • pp.80-91
    • /
    • 2005
  • 건설현장에서 수집되는 사진은 그 중요성에도 불구하고 효과적인 관리체계 미흡으로 촬영자의 의도나 사진의 의미를 파악하기 힘든 경우가 많았으며, 이로 인하여 거대한 디지털 이미지 파일 pool이 형성되어 있음에도 불구하고 그 안에 숨어있는 수많은 정보와 지식을 제대로 도출하기 어렵고 재활용도가 떨어지는 한계를 가지고 있다. 따라서 본 연구의 목적은 수집된 현장 사진들로부터 현장 프로세스에 대한 기술, 지식, 교훈 등의 context를 추출하기 위한 정보체계 구축을 위해 육하원칙, 즉 누가(who), 언제(when), 어디서(where), 무엇을(what), 왜(why), 어떻게(how)라는 원칙에서 일련의 사진들이 가지는 여러 가지 상황정보를 추출하고 이 정보들을 이용하여 효과적으로 정보를 관리하고 재활용할 수 있는 속성을 도출하고 정보 모델을 개발하는 것이다. 이 논문에서는 속성도출 및 정보모델 개발 과정과 이를 기반으로 개발된 사진정보관리 시스템에 관하여 논하고 있다.

Bi-GRU 이미지 캡션의 서술 성능 향상을 위한 Parallel Injection 기법 연구 (Parallel Injection Method for Improving Descriptive Performance of Bi-GRU Image Captions)

  • 이준희;이수환;태수호;서동환
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1223-1232
    • /
    • 2019
  • The injection is the input method of the image feature vector from the encoder to the decoder. Since the image feature vector contains object details such as color and texture, it is essential to generate image captions. However, the bidirectional decoder model using the existing injection method only inputs the image feature vector in the first step, so image feature vectors of the backward sequence are vanishing. This problem makes it difficult to describe the context in detail. Therefore, in this paper, we propose the parallel injection method to improve the description performance of image captions. The proposed Injection method fuses all embeddings and image vectors to preserve the context. Also, We optimize our image caption model with Bidirectional Gated Recurrent Unit (Bi-GRU) to reduce the amount of computation of the decoder. To validate the proposed model, experiments were conducted with a certified image caption dataset, demonstrating excellence in comparison with the latest models using BLEU and METEOR scores. The proposed model improved the BLEU score up to 20.2 points and the METEOR score up to 3.65 points compared to the existing caption model.

통합보안관제 시스템 구축을 위한 온톨로지 기반의 상황인식 모델 (An Ontology-based Context Aware Model for the Implementation of Integrated Security Control System)

  • 한광록;김정빈;손석원
    • 한국산학기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.2246-2255
    • /
    • 2010
  • 본 논문에서는 산업현장에서 통합된 보안관제 시스템을 구축하기 위하여 USN 센서 데이터나 CCTV의 영상으로부터 상황정보를 수집하고 이 상황에 대하여 추론을 할 수 있는 온톨로지 기반의 상황인식 모델에 대하여 기술한다. 상황모델은 스마트 환경에서 자동적이고 이질적인 데이터들을 온톨로지로 표현하고 DL 추론을 통하여 상황을 인식한다. 상황모델을 통합 보안관제 시스템에 적용함으로서 산업현장에서 위험을 자동적으로 검출하여 안전사고를 감소시킬 수 있을 것으로 기대된다.

Context-free Marker-controlled Watershed Transform for Over-segmentation Reduction

  • Seo, Kyung-Seok;Cho, Sang-Hyun;Park, Chang-Joon;Park, Heung-Moon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.482-485
    • /
    • 2000
  • A modified watershed transform is proposed which is context-free marker-controlled and minima imposition-free to reduce the over-segmentation and to speedup the transform. In contrast to the conventional methods in which a priori knowledge, such as flat zones, zones of homogeneous texture, and morphological distance, is required for marker extraction, context-free marker extraction is proposed by using the attention operator based on the GST (generalized symmetry transform). By using the context-free marker, the proposed watershed transform exploit marker-constrained labeling to speedup the computation and to reduce the over-segmentation by eliminating the unnecessary geodesic reconstruction such as the minima imposition and thereby eliminating the necessity of the post-processing of region merging. The simulation results show that the proposed method can extract context-free markers inside the objects from the complex background that includes multiple objects and efficiently reduces over-segmentation and computation time.

  • PDF

생성적 적대 신경망(GAN)을 이용한 한국어 문서에서의 문맥의존 철자오류 교정 (Context-Sensitive Spelling Error Correction Techniques in Korean Documents using Generative Adversarial Network)

  • 이정훈;권혁철
    • 한국멀티미디어학회논문지
    • /
    • 제24권10호
    • /
    • pp.1391-1402
    • /
    • 2021
  • This paper focuses use context-sensitive spelling error correction using generative adversarial network. Generative adversarial network[1] are attracting attention as they solve data generation problems that have been a challenge in the field of deep learning. In this paper, sentences are generated using word embedding information and reflected in word distribution representation. We experiment with DCGAN[2] used for the stability of learning in the existing image processing and D2GAN[3] with double discriminator. In this paper, we experimented with how the composition of generative adversarial networks and the change of learning corpus influence the context-sensitive spelling error correction In the experiment, we correction the generated word embedding information and compare the performance with the actual word embedding information.

컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구 (Implementation of Intelligent Image Surveillance System based Context)

  • 문성룡;신성
    • 대한전자공학회논문지SP
    • /
    • 제47권3호
    • /
    • pp.11-22
    • /
    • 2010
  • 본 논문은 컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구로써 기존 연구의 시공간적 제약성 및 실시간 처리가 어려운 단점을 보완하여 초당 30 프레임으로 이루어져 있는 저해상도 동영상(320*240)을 대상으로 다양한 환경에서 실시간 처리가 가능한 움직임 검출 및 장면 분석 알고리즘을 제안하고 이를 이용해 동영상 감시 시스템을 구축한다. 먼저 장면 분석을 수행하기 위한 전처리 과정인 움직임 검출 알고리즘에서는 연속된 프레임 중 의미 없는 유사 프레임과 배경을 제거하고 움직임 영역만을 검출하기 위해 웨이브렛 변환과 에지 히스토그램을 이용하여 샷의 경계를 검출한다. 다음으로 키프레임 선정 파라미터에 의해 샷 경계 내 대표 키프레임을 선정하며, 에지 히스토그램 및 수학적 형태론을 이용하여 움직임 영역만을 검출한다. 장면 분석 알고리즘에서는 검출된 객체의 수직 수평 비율과 질량 중심을 통해 재구성된 허프 변환 후의 각도를 이용해 독립 객체 분석을 수행하며, '서다, 걷다, 눕다, 앉다'의 4가지 기본 상황 정보를 정의한다. 또한 각 상황의 연결 상태 추정을 통해 일반 상황 및 위급 상황으로 구성되는 단순 상황 모델을 정의함으로써 장면 분석을 수행하며, 제안된 알고리즘의 실시간 처리 가능성을 확인하기 위해 시스템을 구성한다. 제안된 시스템은 저해상도 영상을 대상으로 인식률 면에서 평균 92.5%의 성능을 보였으며, 처리속도는 프레임 당 평균 0.74초로 실시간 처리가 가능함을 확인하였다.

Construction Site Scene Understanding: A 2D Image Segmentation and Classification

  • Kim, Hongjo;Park, Sungjae;Ha, Sooji;Kim, Hyoungkwan
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.333-335
    • /
    • 2015
  • A computer vision-based scene recognition algorithm is proposed for monitoring construction sites. The system analyzes images acquired from a surveillance camera to separate regions and classify them as building, ground, and hole. Mean shift image segmentation algorithm is tested for separating meaningful regions of construction site images. The system would benefit current monitoring practices in that information extracted from images could embrace an environmental context.

  • PDF

모바일 환경에서 의미 기반 이미지 어노테이션 및 검색 (Semantic Image Annotation and Retrieval in Mobile Environments)

  • 노현덕;서광원;임동혁
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1498-1504
    • /
    • 2016
  • The progress of mobile computing technology is bringing a large amount of multimedia contents such as image. Thus, we need an image retrieval system which searches semantically relevant image. In this paper, we propose a semantic image annotation and retrieval in mobile environments. Previous mobile-based annotation approaches cannot fully express the semantics of image due to the limitation of current form (i.e., keyword tagging). Our approach allows mobile devices to annotate the image automatically using the context-aware information such as temporal and spatial data. In addition, since we annotate the image using RDF(Resource Description Framework) model, we are able to query SPARQL for semantic image retrieval. Our system implemented in android environment shows that it can more fully represent the semantics of image and retrieve the images semantically comparing with other image annotation systems.

Cognitive Based Context Aware Reference History Management Tool

  • Punithan, Dharani;McKay, Bob
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.227-231
    • /
    • 2009
  • The aim of the research is to focus on the cognitive principles and to achieve human-level intelligence in referring context based browser history and the Windows history. One of the major problems faced by today's computer users is insufficient and single exclusive context based reference of the browser history and the Windows history. Today we search for the browser history and Windows history in different places even though the context is the same. For e.g., When working on a research paper or preparing a business presentation, a user may require to refer many web sites on the internet and various documents on the local computer. The browser can provide only time based history. The windows document history is also time based and limited to list only few documents. Hence, we propose a tool "Cognitive Based Context Aware Reference History Management Tool" which helps to access the exclusive reference of context and time based history in one place. The tool also proposes to store image history with urls and classifies images of a specific topic accessed in different time, bookmarks management and cross browser history management. These features are very useful as we can access all related documents (doc, docx, ppt, pptx, pdf, txt, and html), web pages, images and bookmarks in one place. The tool uses the cognitive principles like classification and association to achieve the purpose.

  • PDF

서베일런스에서 베이지안 분류기를 이용한 객체 검출 및 추적 (Object Detection and Tracking using Bayesian Classifier in Surveillance)

  • 강성관;최경호;정경용;이정현
    • 디지털융복합연구
    • /
    • 제10권6호
    • /
    • pp.297-302
    • /
    • 2012
  • 본 논문은 이미지 상황분석을 기반으로 하여 객체 검출 및 추적 방법을 제안한다. 제안하는 방법은 배경이 복잡한 형태이거나 배경이 동적으로 움직일 때에도 일관성 있는 결과를 얻을 수 있다. 입력 영상의 상황분석은 K-means와 RBF의 하이브리드 네트워크를 이용하여 수행되어진다. 제안된 객체 검출은 일정하지 않은 객체 이미지 때문에 생기는 영향을 감소시키기 위해 상황 기반 적응적 베이지안 네트워크를 이용한다. 본 논문에서는 학습 속도를 높이기 위해 2D Haar 웨이블릿 변형을 이용한 특징 벡터 생성기와 베이지안 판별식 방법을 이용하여 학습 시간이 적게 걸리며 학습 데이터의 변화에 일정한 성능을 갖는 방법론을 제안하였다. 제안하는 방법을 개발하여 실환경에 적용한 결과 검출하고자 하는 물체가 예측 영역을 넘나들거나 다른 불확실한 변화에도 안정적으로 반응함을 알 수 있었다. 실험 결과는 기존의 방법들에서 사용되었던 다양한 데이터 집합에 적용하였을 때 우수한 성능을 보여준다.