• Title/Summary/Keyword: image artifact

Search Result 393, Processing Time 0.035 seconds

Reduction of Artifacts in Magnetic Resonance Imaging with Diamagnetic Substance (반자성 물질을 이용한 자기공명영상검사에서의 인공물 감소)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.581-588
    • /
    • 2019
  • MRI is superior when contrasted to help the organization generate artifacts resolution, but also affect the diagnosis and create a image that can not be read. Metal is inserted into the tooth, it is necessary to often be inhibited in imaging by causing the geometric distortion due to the majority and if the difference between the magnetic susceptibility of a ferromagnetic material or paramagnetic reducing them. The purpose of this study is to conduct a metal artefact in accordance with the analysis using a diamagnetic material. The magnetic material include a wire for the orthodontic bracket and a stainless steel was used as a diamagnetic material was used copper, zinc, bismuth. Testing equipment is sequenced using 1.5T, 3T was used was measured using a SE, TSE, GE, EPI. A self-produced phantom material was used for agarose gel (10%) to a uniform signal artifacts causing materials are stainless steel were tested by placing in the center of the phantom and cover inspection of the positive cube diamagnetic material of 10mm each length.After a measurement artefact artifact zone settings area was calculated using the Wand tool After setting the Low Threshold value of 10 in the image obtained by subtracting images, including magnetic material from a pure tool phantom images using Image J. Metal artifacts occur in stainless steel metal artifact reduction was greatest in the image with the bismuth diamagnetic materials of copper and zinc is slightly reduced, but the difference in degree will not greater. The reason for this is thought to be due to hayeotgi offset most of the susceptibility in bismuth diamagnetic susceptibility of most small ferromagnetic. Most came with less artifacts in image of bismuth in both 1.5T and 3T. Sequence-specific artifact reduction was most reduced artifacts from the TSE 1.5T 3T was reduced in the most artifacts from SE. Signal-to-noise ratio was the lowest SNR is low, appears in the implant, the 1.5T was the Implant + Bi Cu and Zn showed similar results to each other. Therefore, the results of artifacts variation of diamagnetic material, magnetic susceptibility (${\chi}$) is the most this shows the reduced aspect lower than the implant artificial metal artifacts criteria in the video using low bismuth susceptibility to low material the more metal artifacts It was found that the decrease. Therefore, based on the study on the increase, the metal artifacts reduction for the whole, as well as dental prosthesis future orthodontic materials in a way that can even reduce the artifact does not appear which has been pointed out as a disadvantage of the solutions of conventional metal artifact It is considered to be material.

Evaluation of Effect of Decrease in Metallic Artifacts using the Synthetic MR Technique (Synthetic MR 기법을 이용한 금속 인공물 감소 효과 평가)

  • Soon-Yong, Kwon;Nam-Yong, Ahn;Jeong-Eun, Oh;Seong-Ho, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.835-842
    • /
    • 2022
  • This study is aimed to evaluate the effects of a synthetic MR technique in reducing metal artifacts. In the experiment, the in-plane and through-plane images were acquired by applying a synthetic MR technique and a high-speed spin echo technique to a phantom manufactured with screw for spinal surgery. The area of the metal artifact was compared. The metal artifacts were measured by dividing the signal-loss and the signal pile-up areas, and the area of the final artifact was calculated through the sum of the two. As a result, the metal artifacts were relatively reduced when the synthetic MR techniques were applied to both in-plane and through-plane. Comparing by sequence, the in-plane T1 images decreased by 23.45%, T2 images by 20.85%, PD images by 19.67%, and FLAIR images by 22.12%. Also, in the case of the through-plane, the T1 image decreased by 62.95%, the T2 image decreased by 73.93%, the PD image decreased by 74.68%, and the FLAIR image decreased by 66.43%. The cause of this result is that when the synthetic MR technique is applied, the distortion is due to the signal pile-up and does not occur and the size of the entire metal artifact is reduced. Therefore, synthetic MR technique can very effectively reduce metal artifacts, which can help to increase the diagnostic value of images.

Adaptive DCT-Wiener Filter for Image Restoration (영상 복원을 위한 적응 DCT-Wiener 필터)

  • 김남철;김기육
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.1005-1012
    • /
    • 1987
  • An adaptive scalar DCT-Wiener filtering method that can be applied to the problem of restoring an image degraded by white Gaussian noise is presented. In this method, the power spectrum needed to Winer filering is adaptively estimated in block-wise according to the lical properties in transform domain. In addition, overlapping method for reducing the block artifact is considered. Experimental results show that the adaptive Wiener filter by the proposed method yields performance improvement and better image quality over the nonadaptive one and the spatial Lee filter.

  • PDF

Improved Reconstruction Algorithm for Spiral Scan Fast MR Imaging with DC offset Correction (DC offset을 보정한 나선 주사 초고속 자기공명영상의 재구성 알고리즘)

  • 안창범;김휴정
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.243-250
    • /
    • 1998
  • Reconstruction aspects of spiral scan imaging for ultra fast magnetic resonance imagine(MRI) have been investigated with polar and rectangular coordinates-based reconstruction. For the reconstruction of the spiral scan imaging, acquired data in spiral trjectory should be converted to polar or rectangular grids, where interpolation techniques are used. Various reconstruction algorithms for spiral scan imaging are tested, and reconstructed image qualities are compared with computed phantom. An improved reconstruction algorithm with dc-offset correction in projection domain is proposed, which provides the best reconstructed image quality from the simulation. Image artifact with existing algorithms is completely removed with the proposed method.

  • PDF

Application of a newly developed software program for image quality assessment in cone-beam computed tomography

  • de Oliveira, Marcus Vinicius Linhares;Santos, Antonio Carvalho;Paulo, Graciano;Campos, Paulo Sergio Flores;Santos, Joana
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.75-86
    • /
    • 2017
  • Purpose: The purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images. Materials and Methods: A polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution. Results: The image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence. Conclusion: This software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT.

Image Analysis of Micro Lesions According to Grid Frequency After Removal of Moire Artifact (Moire artifact 제거 후 그리드 주파수에 따른 미세병변의 영상분석)

  • Lee, Sang-Ho;Kim, Gyoo-Hyung;Yang, Oh-Nam
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • Morphological information such as shape and margin of micro lesion is important information for diagnosis of disease in clinical imaging. In this study, we investigated the morphological changes of the micro lesions by comparing the contrast and area in grid suppressed DR images according to grid frequency. In the profile analysis of the image, the mass showed an average intensity variation of 8.6 ~ 72.4 after suppression, The higher the grid frequency, the more the contrast was increased. However, in the images obtained using 103 lp / inch, which is a grid frequency less than the sampling frequency, the contrast of the mass in the vertical direction decreased after suppression. In the binary image, the area change of the mass was also large. As a result, the shape, size, and margin of the mass changed. In the case of very small calcification, the higher the grid frequency is the larger the change in contrast, so that a clear image can be obtained in the post-suppression image. However, we could confirm that the margin of the lesion was blurred and the lesion was lost in some of the images using the 103 lp / inch grid. The higher the frequency of the grid, The change of the contrast of fiber occurred largely and clear boundary was confirmed. The decrease of the number of pixels was small and morphological change was small. In conclusion, when using a grid frequency that is not suitable for the sample frequency, morphological changes or lesion loss of micro lesions in the post- suppression image may give the possibility of misdiagnosis in diagnosis and differentiation of the image.

Dose Evaluation of Dental Artifacts Using MVCT in Head and Neck (두경부암 환자의 MVCT를 이용한 치아 인공물 보정에 따른 선량평가)

  • Shin, Chung Hun;Yun, In Ha;Jeon, Su Dong;Kim, Jeong Mi;Kim, Ho Jin;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.25-31
    • /
    • 2019
  • Purpose: Metals induce metal artifact during CT-image for therapy planning, and it occurs images distortion, which affects the volumetric measurement and radiation calculation. In the case of using megavoltage computed tomography(MVCT), the volume of metals can be measured as similar to true volume due to minimal metal artifact outcome. In this study, radiation assessment was conducted by comparing teeth volume from images of kVCT and MVCT of head and neck cancer patients, then assigning to kVCT image to calculate radiation after obtaining the similar volume of true teeth volume from MVCT. Also, formal IR image was able to verify the accuracy of radiation calculation. Material and method: 5 head and neck cancer patients who had intensity-modulated radiation therapy from Radixact® Series were of the subject in this study. Calculations of radiation when constraining true teeth volume out of kVCT image(A-CT) and when designated specific HU after teeth assigned using MVCT image were compared with formal IR image. Treatment planning was devised at the same constraints and mean dose was measured at the radiation assess points. The points were anterior of the teeth, between PTV and the teeth, the interior of PTV near the teeth, and the teeth where 5cm distance from PTV. Result: A difference of metals volume from kVCT and MVCT image was mean 3.49±2.61cc, maximum 7.43cc. PTV was limited to where the internal teeth were fully contained. The results of PTV dose evaluation showed that the average CI value of the kVCT treatment planning without the artifact correction was 0.86, and the average CI value of the kVCT with the artifact correction using MVCT image was 0.9. Conclusion: When the Treatment Planning was made without correction of metal artifacts, the dose of PTV was underestimated, indicating that dose uncertainty occurred. When the computerized treatment plan was made without correction of metal artifacts, the dose of PTV was underestimated, indicating that dose uncertainty occurred.

The Effect of Metallic Dental Implant on Positron Emission Tomography Computed Tomography Image (금속성 치아충전물이 PET/CT영상이 미치는 영향)

  • Kim, Ki-Jin;Bae, Seok-Hwan;Han, Sang-Hyun;Yu, Se-Jong;Lee, Bo-Woo
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.243-247
    • /
    • 2012
  • Beam hardening artifact happens in the CT image. when a PET/CT is conducted while there is a metallic dental implant. The artifact appears in the CT image can affect the PET image. When the patient with head and neck cancer has a metallic dental implant, Beam hardening artifact which was taken in th CT image can change the PET image and SUV value. Therefore, by Quantitative measure of the SUV according to the change in HU by the metallic dental implant, the appropriacy in the clinical application was assessed. The records of 47 patients with PET/CT August 2011. For the analysis, 2 region of interest were defined in area where CT and PET image. As a result of the experiment, if there in an implant, the HU and the SUV increased and there existed a statistically significant difference(p<0.01). Although this level of increase was not large compared with that in the patient who have no metallic dental implant, when a person has head and neck cancer, it is even more likely to be overestimated when diagnosing the cancer. When conducting PET/CT for the patient who have head and neck cancer, the physical biological parts should be considered in order not to make an error in decoding.

Convergence Comparison of Metal Artifact Reduction Rate for Pacemaker Insertion of CT Imaging Phantoms in the Raw Data with MAR Algorithm (심박조율기 삽입 팬텀의 CT영상 원시데이터에 금속인공물감소 알고리즘 적용 시 금속인공물 감소율의 융합적 비교)

  • Kim, Hyeon-ju;Yoon, Joon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • In the analyzed cardiac CT algorithm applied when comparing the MAR self-made metal artifact reduction in pacemaker inserted phantom degree. Result of comparing the energy value by CT showed a decrease in the CT value in the case of BKG 40 KeV in WSA maximum decreased to 663.2% in the case of 140 KeV BHA were increased a maximum of 56.2%. In addition, the maximum was decreased by approximately 145% based on a 70 KeV artifacts in CT value comparison by type WSA, BHA was to increase up to approximately 46.38%. MAR Algorithm is believed to provide a more quality cardiac CT image if the energy changes, or have the effect that by type and irrespective of reduced metal artifacts occurrence of artifacts applied to the pacemaker when tracking a heart CT scan after inserting MAR algorithm.

A New Microwave Imaging Technique Using a Coherent Tomographic Scheme in Space Domain (공간영역에서 코히어런트 단층촬영 기법을 이용한 새로운 초고주파 영상방법)

  • Seo, Kyoung-Whoan;Kim, Se-Yun;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.16-30
    • /
    • 1990
  • The microwave imaging technique which is mostly analyzed in the spectral domain has been exploited the image reconstruction of object using the 2-dimensional inverse Fourier transform so far. In this paper, a new method of microwave imaging corresponding to a coherent tomographic scheme in the space domain is presented for the conducting objects. Also, it is shown that image reconstruction for lines targets and conducting circular cylinder is per-formed by computer simulation using the filtered-backprojection which is the reconstruction algorithm widely used in X-ray CT. The proposed method analyzed in the space domain can reconstruct the image without any problems such as interpolation and image artifact which results from the reconstruction in the spectral domain for the symmetric conducting objects located in the origin. The image reconstructed by the filtered-backprojection in the space domain has given the superior quality compared with that produced by 2-dimensional IFFT using the interpolation scheme in the spectral domain. Finally, the image of line targets using the moment-method in the space domain which does not require the wide-band signal as the spectral domain has shown a possibility of super-resolution in the microwave imaging.

  • PDF