• Title/Summary/Keyword: image analysis method

Search Result 4,254, Processing Time 0.036 seconds

Finite Element Method Modeling for Individual Malocclusions: Development and Application of the Basic Algorithm (유한요소법을 이용한 환자별 교정시스템 구축의 기초 알고리즘 개발과 적용)

  • Shin, Jung-Woog;Nahm, Dong-Seok;Kim, Tae-Woo;Lee, Sung Jae
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.815-824
    • /
    • 1997
  • The purpose of this study is to develop the basic algorithm for the finite element method modeling of individual malocclusions. Usually, a great deal of time is spent in preprocessing. To reduce the time required, we developed a standardized procedure for measuring the position of each tooth and a program to automatically preprocess. The following procedures were carried to complete this study. 1. Twenty-eight teeth morphologies were constructed three-dimensionally for the finite element analysis and saved as separate files. 2. Standard brackets were attached so that the FA points coincide with the center of the brackets. 3. The study model of a patient was made. 4. Using the study model, the crown inclination, angulation, and the vertical distance from the tip of a tooth was measured by using specially designed tools. 5. The arch form was determined from a picture of the model with an image processing technique. 6. The measured data were input as a rotational matrix. 7. The program provides an output file containing the necessary information about the three-dimensional position of teeth, which is applicable to several finite element programs commonly used. The program for a basic algorithm was made with Turbo-C and the subsequent outfile was applied to ANSYS. This standardized model measuring procedure and the program reduce the time required, especially for preprocessing and can be applied to other malocclusions easily.

  • PDF

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF

A Study on Bismuth tri-iodide for X-ray direct and digital imagers (직접방식 엑스선 검출기를 위한 $BiI_3$ 특성 연구)

  • Lee, S.H.;Kim, Y.S.;Kim, Y.B.;Jung, S.H.;Park, J.K.;Jung, W.B.;Jang, M.Y.;Mun, C.W.;Nam, S.H.
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.2
    • /
    • pp.27-31
    • /
    • 2009
  • Now a days, the Medical X-ray equipments has become digitalized from analog type such as film, cassette to CR, DR. And many scientists are still researching and developing the Medical X-ray equipment. In this study, we used the Bismuth tri-iodide to conversion material for digital X-ray equipments and we couldn't get the satisfying result than previous study, but it opened new possibility to cover the disadvantage of a-Se is high voltage aplly and difficultness of make. In this paper, we use $BiI_3$ powder(99.99%) as x-ray conversion material and make films that have thickness of 200um and the film size is $3cm{\times}3cm$. Also, we deposited an ITO(Indium Tin Oxide) electrode as top electrode and bottom electrode using a Magnetron Sputtering System. To evaluate a characteristics of the produced films, an electrical and structural properties are performed. Through a SEM analysis, we confirmed a surface and component part. And to analyze the electrical properties, darkcurrent, sensitivity and SNR(Signal to Noise Ratio) are measured. Darkcurrent is $1.6nA/cm^2$ and sensitivity is $0.629nC/cm^2$ and this study shows that the electrical properties of x-ray conversion material that made by screen printing method are similar to PVD method or better than that. This results suggest that $BiI_3$ is suitable for a replacement of a-Se because of the reduced manufacture processing and improved yield.

  • PDF

The Influence of Iteration and Subset on True X Method in F-18-FPCIT Brain Imaging (F-18-FPCIP 뇌 영상에서 True-X 재구성 기법을 기반으로 했을 때의 Iteration과 Subset의 영향)

  • Choi, Jae-Min;Kim, Kyung-Sik;NamGung, Chang-Kyeong;Nam, Ki-Pyo;Im, Ki-Cheon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.122-126
    • /
    • 2010
  • Purpose: F-18-FPCIT that shows strong familiarity with DAT located at a neural terminal site offers diagnostic information about DAT density state in the region of the striatum especially Parkinson's disease. In this study, we altered the iteration and subset and measured SUV${\pm}$SD and Contrasts from phantom images which set up to specific iteration and subset. So, we are going to suggest the appropriate range of the iteration and subset. Materials and Methods: This study has been performed with 10 normal volunteers who don't have any history of Parkinson's disease or cerebral disease and Flangeless Esser PET Phantom from Data Spectrum Corporation. $5.3{\pm}0.2$ mCi of F-18-FPCIT was injected to the normal group and PET Phantom was assembled by ACR PET Phantom Instructions and it's actual ratio between hot spheres and background was 2.35 to 1. Brain and Phantom images were acquired after 3 hours from the time of the injection and images were acquired for ten minutes. Basically, SIEMENS Bio graph 40 True-point was used and True-X method was applied for image reconstruction method. The iteration and Subset were set to 2 iterations, 8 subsets, 3 iterations, 16 subsets, 6 iterations, 16 subsets, 8 iterations, 16 subsets and 8 iterations, 21 subsets respectively. To measure SUVs on the brain images, ROIs were drawn on the right Putamen. Also, Coefficient of variance (CV) was calculated to indicate the uniformity at each iteration and subset combinations. On the phantom study, we measured the actual ratio between hot spheres and back ground at each combinations. Same size's ROIs were drawn on the same slide and location. Results: Mean SUVs were 10.60, 12.83, 13.87, 13.98 and 13.5 at each combination. The range of fluctuation by sets were 22.36%, 10.34%, 1.1%, and 4.8% respectively. The range of fluctuation of mean SUV was lowest between 6 iterations 16 subsets and 8 iterations 16 subsets. CV showed 9.07%, 11.46%, 13.56%, 14.91% and 19.47% respectively. This means that the numerical value of the iteration and subset gets higher the image's uniformity gets worse. The range of fluctuation of CV by sets were 2.39, 2.1, 1.35, and 4.56. The range of fluctuation of uniformity was lowest between 6 iterations, 16 subsets and 8 iterations, 16 subsets. In the contrast test, it showed 1.92:1, 2.12:1, 2.10:1, 2.13:1 and 2.11:1 at each iteration and subset combinations. A Setting of 8 iterations and 16 subsets reappeared most close ratio between hot spheres and background. Conclusion: Findings on this study, SUVs and uniformity might be calculated differently caused by variable reconstruction parameters like filter or FWHM. Mean SUV and uniformity showed the lowest range of fluctuation at 6 iterations 16 subsets and 8 iterations 16 subsets. Also, 8 iterations 16 subsets showed the nearest hot sphere to background ratio compared with others. But it can not be concluded that only 6 iterations 16 subsets and 8 iterations 16 subsets can make right images for the clinical diagnosis. There might be more factors that can make better images. For more exact clinical diagnosis through the quantitative analysis of DAT density in the region of striatum we need to secure healthy people's quantitative values.

  • PDF

Study of the Optimize Radiotherapy Treatment Planning (RTP) Techniques in Patients with Early Breast Cancer; Inter-comparison of 2D and 3D (3DCRT, IMRT) Delivery Techniques (유방암 방사선치료 시 최적의 방사선치료계획기법에 대한 고찰)

  • Kim, Young-Bum;Lee, Sang-Rok;Chung, Se-Young;Kwon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • Purpose: A various find of radiotherapy treatment plans have been made to determine appropriate doses for breasts, chest walls and loco-regional lymphatics in the radiotherapy of breast cancers. The aim of this study was to evaluate the optimum radiotherapy plan technique method by analyzing dose distributions qualitatively and quantitatively. Materials and Methods: To evaluate the optimum breast cancer radiotherapy plan technique, the traditional method(two dimensional method) and computed tomography image are adopted to get breast volume, and they are compared with the three-dimensional conformal radiography (3DCRT) and the intensity modulated radiotherapy (IMRT). For this, the regions of interest (ROI) such as breasts, chest walls, loco-regional lymphatics and lungs were marked on the humanoid phantom, and the computed tomography(Volume, Siemens, USA) was conducted. Using the computed tomography image obtained, radiotherapy treatment plans (XiO 5.2.1, FOCUS, USA) were made and compared with the traditional methods by applying 3DCRT and IMRT. The comparison and analysis were made by analyzing and conducting radiation dose distribution and dose-volume histogram (DVH) based upon radiotherapy techniques (2D, 3DCRT, IMRT) and point doses for the regions of interest. Again, treatment efficiency was evaluated based upon time-labor. Results: It was found that the case of using 3DCRT plan techniques by getting breast volume is more useful than the traditional methods in terms of tumor delineation, beam direction and confirmation of field boundary. Conclusion: It was possible to present the optimum radiotherapy plan techniques through qualitative and quantitative analyses based upon radiotherapy plan techniques in case of breast cancer radiotherapy. However, further studies are required for the problems with patient setup reproducibility arising from the difficulties of planning target volume (PVT) and breast immobilization in case of three-dimensional radiotherapy planning.

  • PDF

The Evaluation of Resolution Recovery Based Reconstruction Method, Astonish (Resolution Recovery 기반의 Astonish 영상 재구성 기법의 평가)

  • Seung, Jong-Min;Lee, Hyeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • Objective: The 3-dimensional reconstruction method with resolution recovery modeling has advantages of high spatial resolution and contrast because of its precise modeling of spatial blurring according to the distance from detector plane. The aim of this study was to evaluate one of the resolution recovery reconstruction methods (Astonish, Philips Medical), compare it to other iterative reconstructions, and verify its clinical usefulness. Materials and Methods: NEMA IEC PET body phantom and Flanges Jaszczak ECT phantom (Data Spectrum Corp., USA) studies were performed using Skylight SPECT (Philips) system under four different conditions; short or long (2 times of short) radius, and half or full (40 kcts/frame) acquisition counts. Astonish reconstruction method was compared with two other iterative reconstructions; MLEM and 3D-OSEM which vendor supplied. For quantitative analysis, the contrast ratios obtained from IEC phantom test were compared. Reconstruction parameters were determined by optimization study using graph of contrast ratio versus background variability. The qualitative comparison was performed with Jaszczak ECT phantom and human myocardial data. Results: The overall contrast ratio was higher with Astonish than the others. For the largest hot sphere of 37 mm diameter, Astonish showed about 27.1% and 17.4% higher contrast ratio than MLEM and 3D-OSEM, in short radius study. For long radius, Astonish showed about 40.5% and 32.6% higher contrast ratio than MLEM and 3D-OSEM. The effect of acquired counts was insignificant. In the qualitative studies with Jaszczak phantom and human myocardial data, Astonish showed the best image quality. Conclusion: In this study, we have found out that Astonish can provide more reliable clinical results by better image quality compared to other iterative reconstruction methods. Although further clinical studies are required, Astonish would be used in clinics with confidence for enhancement of images.

  • PDF

The Evaluation of Attenuation Difference and SUV According to Arm Position in Whole Body PET/CT (전신 PET/CT 검사에서 팔의 위치에 따른 감약 정도와 SUV 변화 평가)

  • Kwak, In-Suk;Lee, Hyuk;Choi, Sung-Wook;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Purpose: For better PET imaging with accuracy the transmission scanning is inevitably required for attenuation correction. The attenuation is affected by condition of acquisition and patient position, consequently quantitative accuracy may be decreased in emission scan imaging. In this paper, the present study aims at providing the measurement for attenuation varying with the positions of the patient's arm in whole body PET/CT, further performing the comparative analysis over its SUV changes. Materials and Methods: NEMA 1994 PET phantom was filled with $^{18}F$-FDG and the concentration ratio of insert cylinder and background water fit to 4:1. Phantom images were acquired through emission scanning for 4min after conducting transmission scanning by using CT. In an attempt to acquire image at the state that the arm of the patient was positioned at the lower of ahead, image was acquired in away that two pieces of Teflon inserts were used additionally by fixing phantoms at both sides of phantom. The acquired imaged at a were reconstructed by applying the iterative reconstruction method (iteration: 2, subset: 28) as well as attenuation correction using the CT, and then VOI was drawn on each image plane so as to measure CT number and SUV and comparatively analyze axial uniformity (A.U=Standard deviation/Average SUV) of PET images. Results: It was found from the above phantom test that, when comparing two cases of whether Teflon insert was fixed or removed, the CT number of cylinder increased from -5.76 HU to 0 HU, while SUV decreased from 24.64 to 24.29 and A.U from 0.064 to 0.052. And the CT number of background water was identified to increase from -6.14 HU to -0.43 HU, whereas SUV decreased from 6.3 to 5.6 and A.U also decreased from 0.12 to 0.10. In addition, as for the patient image, CT number was verified to increase from 53.09 HU to 58.31 HU and SUV decreased from 24.96 to 21.81 when the patient's arm was positioned over the head rather than when it was lowered. Conclusion: When arms up protocol was applied, the SUV of phantom and patient image was decreased by 1.4% and 9.2% respectively. With the present study it was concluded that in case of PET/CT scanning against the whole body of a patient the position of patient's arm was not so much significant. Especially, the scanning under the condition that the arm is raised over to the head gives rise to more probability that the patient is likely to move due to long scanning time that causes the increase of uptake of $^{18}F$-FDG of brown fat at the shoulder part together with increased pain imposing to the shoulder and discomfort to a patient. As regarding consideration all of such factors, it could be rationally drawn that PET/CT scanning could be made with the arm of the subject lowered.

  • PDF

Comparison of CT based-CTV plan and CT based-ICRU38 plan in brachytherapy planning of uterine cervix cancer (자궁경부암 강내조사 시 CT를 이용한 CTV에 근거한 치료계획과 ICRU 38에 근거할 치료계획의 비교)

  • Shim JinSup;Jo JungKun;Si ChangKeun;Lee KiHo;Lee DuHyun;Choi KyeSuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • Purpose : Although Improve of CT, MRI Radio-diagnosis and Radiation Therapy Planing, but we still use ICRU38 Planning system(2D film-based) broadly. 3-Dimensional ICR plan(CT image based) is not only offer tumor and normal tissue dose but also support DVH information. On this study, we plan irradiation-goal dose on CTV(CTV plan) and irradiation-goal dose on ICRU 38 point(ICRU38 plan) by use CT image. And compare with tumor-dose, rectal-dose, bladder-dose on both planning, and analysis DVH Method and Material : Sample 11 patients who treated by Ir-192 HDR. After 40Gy external radiation therapy, ICR plan established. All the patients carry out CT-image scanned by CT-simulator. And we use PLATO(Nucletron) v.14.2 planing system. We draw CTV, rectum, bladder on the CT image. And establish plan irradiation-$100\%$ dose on CTV(CTV plan) and irradiation-$100\%$ dose on A-point(ICRU38 plan) Result : CTV volume($average{\pm}SD$) is $21.8{\pm}26.6cm^3$, rectum volume($average{\pm}SD$) is $60.9{\pm}25.0cm^3$, bladder volume($average{\pm}SD$) is $116.1{\pm}40.1cm^3$ sampled 11 patients. The volume including $100\%$ dose is $126.7{\pm}18.9cm^3$ on ICRU plan and $98.2{\pm}74.5cm^3$ on CTV plan. On ICRU planning, the other one's $22.0cm^3$ CTV volume who residual tumor size excess 4cm is not including $100\%$ isodose. 8 patient's $12.9{\pm}5.9cm^3$ tumor volume who residual tumor size belows 4cm irradiated $100\%$ dose. Bladder dose(recommended by ICRU 38) is $90.1{\pm}21.3\%$ on ICRU plan, $68.7{\pm}26.6\%$ on CTV plan, and rectal dose is $86.4{\pm}18.3\%,\;76.9{\pm}15.6\%$. Bladder and Rectum maximum dose is $137.2{\pm}50.1\%,\;101.1{\pm}41.8\%$ on ICRU plan, $107.6{\pm}47.9\%,\;86.9{\pm}30.8\%$ on CTV plan. Therefore CTV plan more less normal issue-irradiated dose than ICRU plan. But one patient case who residual tumor size excess 4cm, Normal tissue dose more higher than critical dose remarkably on CTV plan. $80\%$over-Irradiated rectal dose(V80rec) is $1.8{\pm}2.4cm^3$ on ICRU plan, $0.7{\pm}1.0cm^3$ on CTV plan. $80\%$over-Irradiated bladder dose(V80bla) is $12.2{\pm}8.9cm^3$ on ICRU plan, $3.5{\pm}4.1cm^3$ on CTV plan. Likewise, CTV plan more less irradiated normal tissue than ICRU38 plan. Conclusion : Although, prove effect and stability about previous ICRU plan, if we use CTV plan by CT image, we will reduce normal tissue dose and irradiated goal-dose at residual tumor on small residual tumor case. But bigger residual tumor case, we need more research about effective 3D-planning.

  • PDF

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.

Analysis of the Range Verification of Proton using PET-CT (Off-line PET-CT를 이용한 양성자치료에서의 Range 검증)

  • Jang, Joon Young;Hong, Gun Chul;Park, Sey Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2017
  • Purpose: The proton used in proton therapy has a characteristic of giving a small dose to the normal tissue in front of the tumor site while forming a Bragg peak at the cancer tissue site and giving up the maximum dose and disappearing immediately. It is very important to verify the proton arrival position. In this study, we used the off-line PET CT method to measure the distribution of positron emitted from nucleons such as 11C (half-life = 20 min), 150 (half-life = 2 min) and 13N The range and distal falloff point of the proton were verified by measurement. Materials and Methods: In the IEC 2001 Body Phantom, 37 mm, 28 mm, and 22 mm spheres were inserted. The phantom was filled with water to obtain a CT image for each sphere size. To verify the proton range and distal falloff points, As a treatment planning system, SOBP were set at 46 mm on 37 mm sphere, 37 mm on 28 mm, and 33 mm on 22 mm sphere for each sphere size. The proton was scanned in the same center with a single beam of Gantry 0 degree by the scanning method. The phantom was scanned using PET-CT equipment. In the PET-CT image acquisition method, 50 images were acquired per minute, four ROIs including the spheres in the phantom were set, and 10 images were reconstructed. The activity profile according to the depth was compared to the dose profile according to the sphere size established in the treatment plan Results: The PET-CT activity profile decreased rapidly at the distal falloff position in the 37 mm, 28 mm, and 22 mm spheres as well as the dose profile. However, in the SOBP section, which is a range for evaluating the range, the results in the proximal part of the activity profile are different from those of the dose profile, and the distal falloff position is compared with the proton therapy plan and PET-CT As a result, the maximum difference of 1.4 mm at the 50 % point of the Max dose, 1.1 mm at the 45 % point at the 28 mm sphere, and the difference at the 22 mm sphere at the maximum point of 1.2 mm were all less than 1.5 mm in the 37 mm sphere. Conclusion: To maximize the advantages of proton therapy, it is very important to verify the range of the proton beam. In this study, the proton range was confirmed by the SOBP and the distal falloff position of the proton beam using PET-CT. As a result, the difference of the distally falloff position between the activity distribution measured by PET-CT and the proton therapy plan was 1.4 mm, respectively. This may be used as a reference for the dose margin applied in the proton therapy plan.

  • PDF