• Title/Summary/Keyword: image analysis algorithm

Search Result 1,480, Processing Time 0.027 seconds

A Study for Vision-based Estimation Algorithm of Moving Target Using Aiming Unit of Unguided Rocket (무유도 로켓의 조준 장치를 이용한 영상 기반 이동 표적 정보 추정 기법 연구)

  • Song, Jin-Mo;Lee, Sang-Hoon;Do, Joo-Cheol;Park, Tai-Sun;Bae, Jong-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.315-327
    • /
    • 2017
  • In this paper, we present a method for estimating of position and velocity of a moving target by using the range and the bearing measurements from multiple sensors of aiming unit. In many cases, conventional low cost gyro sensor and a portable laser range finder(LRF) degrade the accuracy of estimation. To enhance these problems, we propose two methods. The first is background image tracking and the other is principal component analysis (PCA). The background tracking is used to assist the low cost gyro censor. And the PCA is used to cope with the problems of a portable LRF. In this paper, we prove that our method is robust with respect to low-frequency, biased and noisy inputs. We also present a comparison between our method and the extended Kalman filter(EKF).

Indoor Precise Positioning Technology for Vehicles Using Floor Marks (플로어 마크를 이용한 차량용 실내 정밀 측위 기술)

  • Park, Ji-hoon;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2321-2330
    • /
    • 2015
  • A variety of studies for indoor positioning are now being in progress due to the limit of GPS that becomes obsolete in the room. However, most of them are based on private wireless networks and the situation is difficult to commercialize them since they are expensive in terms of installation and maintenance costs, non-real-time, and not accurate. This paper applies the mark recognition algorithm used in existing augmented reality applications to the indoor vehicle positioning application. It installs floor marks on the ground, performs the perspective transformation on it and decodes the internal data of the mark and, as a result, it obtains an absolute coordinate. Through the geometric analysis, it obtains current position (relative coordinates) of a vehicle away from the mark and the heading direction of the vehicle. The experiment results show that when installing the marks every 5 meter, an error under about 30 cm occurred. In addition, it is also shown that the mark recognition rate is 43.2% of 20 frames per second at the vehicle speed of 20km/h. Thus, it is thought that this idea is commercially valuable.

Estimation of the Spectral Power Distribution of Illumination for Color Digital Image by Using Achromatic Region and Population (디지털 영상에서 무채색 영역과 모집단을 이용한 조명광원의 분광방사 추정)

  • 곽한봉;서봉우;이철회;하영호;안석출
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.39-46
    • /
    • 2001
  • In this paper we propose a new method that can be estimation the spectral power distribution of the light source from three-band images. the light source is estimated by dividing the reflected spectral power distribution of the maximum achromatic region(L(λ)) by the corresponding surface reflectance(Ο(λ)). In order to obtain reflected spectral power distribution of the maximum achromatic region from three-bend images, a modified gray world assumption algorithm is adapted. And the maximum surface reflectance is estimated using the principal component analysis method along with achromatic population. The achromatic population is created from a set of given Munsell color chips whose chroma vector is less than threshold. Cumulative contribution ratio of principal components from the first to the third for classified achromatic population was about 99.75%. The reconstruction of illumination spectral power distribution by using achromatic population and three-band digital images captured under various light source was examined, and evaluated by RMSE between the original and reconstructed illumination spectral power distribution. This work was supported by grant No (2000-1-30200-005-3) from the Basic Research Program of the Korea Science & Engineering Foundation.

  • PDF

Auto-detection of Halo CME Parameters as the Initial Condition of Solar Wind Propagation

  • Choi, Kyu-Cheol;Park, Mi-Young;Kim, Jae-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.315-330
    • /
    • 2017
  • Halo coronal mass ejections (CMEs) originating from solar activities give rise to geomagnetic storms when they reach the Earth. Variations in the geomagnetic field during a geomagnetic storm can damage satellites, communication systems, electrical power grids, and power systems, and induce currents. Therefore, automated techniques for detecting and analyzing halo CMEs have been eliciting increasing attention for the monitoring and prediction of the space weather environment. In this study, we developed an algorithm to sense and detect halo CMEs using large angle and spectrometric coronagraph (LASCO) C3 coronagraph images from the solar and heliospheric observatory (SOHO) satellite. In addition, we developed an image processing technique to derive the morphological and dynamical characteristics of halo CMEs, namely, the source location, width, actual CME speed, and arrival time at a 21.5 solar radius. The proposed halo CME automatic analysis model was validated using a model of the past three halo CME events. As a result, a solar event that occurred at 03:38 UT on Mar. 23, 2014 was predicted to arrive at Earth at 23:00 UT on Mar. 25, whereas the actual arrival time was at 04:30 UT on Mar. 26, which is a difference of 5 hr and 30 min. In addition, a solar event that occurred at 12:55 UT on Apr. 18, 2014 was estimated to arrive at Earth at 16:00 UT on Apr. 20, which is 4 hr ahead of the actual arrival time of 20:00 UT on the same day. However, the estimation error was reduced significantly compared to the ENLIL model. As a further study, the model will be applied to many more events for validation and testing, and after such tests are completed, on-line service will be provided at the Korean Space Weather Center to detect halo CMEs and derive the model parameters.

Wavelet Compression Experiments of the Remotely Sensed Images for Three Kinds of Wavelet Families

  • Jin, Hong-Sung;Han, Dong-Yeob
    • Spatial Information Research
    • /
    • v.17 no.4
    • /
    • pp.455-462
    • /
    • 2009
  • A method to find the nearly optimal PSNR values for compression was tried to remotely sensed images. There is no rule to find the best wavelet pairs for image processing. The expected wavelet pairs following the suggested algorithm showed the optimal result for various kinds of images. Firstly, the PSNR variations with three wavelet families were analyzed. In many cases the longer wavelet filter shows the higher PSNR value, but the rate is getting less in orthogonal wavelet families. Wavelets with moderate filter length are suggested at the point of computational cost. For biorthogonal families it was hard to predict from the length of filters. Multiresolution wavelet analysis was used up to level 3 with three kinds of wavelet families. Biorthogonal wavelet family showed irregular pattern to get the maximum PSNR values, while orthogonal wavelet families showed regular pattern. In orthogonal wavelet families the nearly optimal wavelet pair can be predicted from the level 1.

  • PDF

Analysis of Noise Sensitivity due to Image Wireless Transmission (링크암호 환경에서 이미지 데이터와 잡음의 영향)

  • Kim, KiHwan;Kim, HyeongRag;Lee, HoonJae;Ryu, Young-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.211-220
    • /
    • 2018
  • The standard data link layer encryption provided by CCSDS has a structure that encodes HDLC frame into it using an AES algorithm. However, CCSDS is standard method has a structure in which the receiving side cannot request a re-activation when noise interference occurs over an unstable channel. SES Alarmed has a structure that enables the receiving side to additionally detect errors and perform re-activation requests in an operational structure similar to that of link encryption in CCSDS. The SES Alarmed related paper was intended to identify the optimum range of thresholds and identify data corruption due to channel noise. In this paper, the focus was on reducing the re-activation process if the HDLC frame, excluding the password Sync code, consistently exceeds any threshold levels. The HDLC frame order was changed and the results of using SES Alarmed were proposed and compared.

A User Sentiment Classification Using Instagram image and text Analysis (인스타그램 이미지와 텍스트 분석을 통한 사용자 감정 분류)

  • Hong, Taekeun;Kim, Jeongin;Shin, Juhyun
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.61-68
    • /
    • 2016
  • According to increasing SNS users and developing smart devices like smart phone and tablet PC recently, many techniques to classify user emotions with social network information are researching briskly. The use emotion classification stands for distinguishing its emotion with text and images listed on his/her SNS. This paper suggests a method to classify user emotions through sampling a value of a representative figure on a trigonometrical function, a representative adjective on text, and a canny algorithm on images. The sampling representative adjective on text is selected as one of high frequency in the samplings and measured values of positive-negative by SentiWordNet. Figures sampled on images are selected as the representative in figures; triangle, quadrangle, and circle as well as classified user emotions by measuring pleasure-unpleased values as a type of figures and inclines. Finally, this is re-defined as x-y graph that represents pleasure-unpleased and positive-negative values with wheel of emotions by Plutchik. Also, we are anticipating for applying user-customized service through classifying user emotions on wheel of emotions by Plutchik that is redefined the representative adjectives and figures.

Surface Rendering in Abdominal Aortic Aneurysm by Deformable Model (복부대동맥의 3차원 표면모델링을 위한 가변형 능동모델의 적용)

  • Choi, Seok-Yoon;Kim, Chang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.266-274
    • /
    • 2009
  • An abdominal aortic aneurysm occurs most commonly in older individuals (between 65 and 75), and more in men and smokers. The most important complication of an abdominal aortic aneurysm is rupture, which is most often a fatal event. An abdominal aortic aneurysm weakens the walls of the blood vessel, leaving it vulnerable to bursting open, or rupturing, and spilling large amounts of blood into the abdominal cavity. surface modeling is very useful to surgery for quantitative analysis of abdominal aortic aneurysm. the 3D representation and surface modeling an abdominal aortic aneurysm structure taken from Multi Detector Computed Tomography. The construction of the 3D model is generally carried out by staking the contours obtained from 2D segmentation of each CT slice, so the quality of the 3D model strongly defends on the precision of segmentation process. In this work we present deformable model algorithm. deformable model is an energy-minimizing spline guided by external constraint force. External force which we call Gradient Vector Flow, is computed as a diffusion of a gradient vectors of gray level or binary edge map derived from the image. Finally, we have used snakes successfully for abdominal aortic aneurysm segmentation the performance of snake was visually and quantitatively validated by experts.

Cracks Detection of Concrete Slab Surface using ART2 based Quantization (ART2 기반 양자화를 이용한 콘크리트 슬래브 표면의 균열 검출)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1897-1902
    • /
    • 2008
  • In computer vision analysis of detecting concrete slab surface cracks, there are many difficulties to overcome. Target images often have defamations due to the light condition and other external environment. Another difficulties in detecting concrete crack image is that there is no clear distinction in intensity between the crack and the surface since the surface is often irregular. In this paper, we apply ART2 based quantization in order to classify target concrete slab surface images into several areas with respect to the light intensity. From those quantized areas, we investigate the distribution of real cracks and noises. Then, we extract candidate crack areas after applying noise removal process to areas which have be th oracle and noises. Finally, crack areas are recognized by using morphological features of cracks from such candidate areas. In experiment with real world concrete slab structure images, our algorithm has advantage in recognizing accuracy of cracks to other algorithms especially in relatively brighter areas of concrete surface.

Comparison between Neural Network and Conventional Statistical Analysis Methods for Estimation of Water Quality Using Remote Sensing (원격탐사를 이용한 수질평가시의 인공신경망에 의한 분석과 기존의 회귀분석과의 비교)

  • 임정호;정종철
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.107-117
    • /
    • 1999
  • A comparison of a neural network approach with the conventional statistical methods, multiple regression and band ratio analyses, for the estimation of water quality parameters in presented in this paper. The Landsat TM image of Lake Daechung acquired on March 18, 1996 and the thirty in-situ sampling data sets measured during the satellite overpass were used for the comparison. We employed a three-layered and feedforward network trained by backpropagation algorithm. A cross validation was applied because of the small number of training pairs available for this study. The neural network showed much more successful performance than the conventional statistical analyses, although the results of the conventional statistical analyses were significant. The superiority of a neural network to statistical methods in estimating water quality parameters is strictly because the neural network modeled non-linear behaviors of data sets much better.