• Title/Summary/Keyword: image analysis algorithm

Search Result 1,481, Processing Time 0.059 seconds

Impervious Surface Mapping of Cheongju by Using RapidEye Satellite Imagery (RapidEye 위성영상을 이용한 청주시의 불투수면지도 생성기법)

  • Park, Hong Lyun;Choi, Jae Wan;Choi, Seok Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • Most researches have created the impervious surface map by using low-spatial-resolution satellite imagery and are inefficient to generate the object-based impervious map with a broad area. In this study, segment-based impervious surface mapping algorithm is proposed using the RapidEye satellite imagery in order to map impervious area. At first, additional bands are generated by using TOA reflectance conversion RapidEye data. And then, shadow and water class are extracted using training data of converted reflectance image. Object-based impervious surface can be generated by spectral mixture analysis based on land cover map of Ministry of Environment with medium scale, in the case of other classes except shadow and water classes. The experiment shows that result by our method represents high classification accuracy compared to reference data, quantitatively.

The Implementation of Face Authentication System Using Real-Time Image Processing (실시간 영상처리를 이용한 얼굴 인증 시스템 구현)

  • Baek, Young-Hyun;Shin, Seong;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.193-199
    • /
    • 2008
  • In this paper, it is proposed the implementation of face authentication system based on real-time image processing. We described the process implementing the two steps for real-time face authentication system. At first face detection steps, we describe the face detection by using feature of wavelet transform, LoG operator and hausdorff distance matching. In the second step we describe the new dual-line principal component analysis(PCA) for real-time face recognition. It is combines horizontal line to vertical line so as to accept local changes of PCA. The proposed system is affected a little by the video size and resolution. And then simulation results confirm the effectiveness of out system and demonstrate its superiority to other conventional algorithm. Finally, the possibility of performance evaluation and real-time processing was confirmed through the implementation of face authentication system.

Effective Gray-white Matter Segmentation Method based on Physical Contrast Enhancement in an MR Brain Images (MR 뇌 영상에서 물리기반 영상 개선 작업을 통한 효율적인 회백질 경계 검출 방법)

  • Eun, Sung-Jong;Whangbo, Taeg-Keun
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.275-282
    • /
    • 2013
  • In medical image processing field, object recognition is usually carried out by computerized processing of various input information such as brightness, shape, and pattern. If the information mentioned does not make sense, however, many limitations could occur with object recognition during computer processing. Therefore, this paper suggests effective object recognition method based on the magnetic resonance (MR) theory to resolve the basic limitations in computer processing. We propose the efficient method of robust gray-white matter segmentation by texture analysis through the Susceptibility Weighted Imaging (SWI) for contrast enhancement. As a result, an average area difference of 5.2%, which was higher than the accuracy of conventional region segmentation algorithm, was obtained.

An analysis of the moving speed effect of the receiver array on the passive synthetic aperture signal processing (수동형 합성개구 신호처리에서 수신 배열 센서의 이동 속도에 대한 영향 분석)

  • Kim, Sea-Moon;Byun, Sung-Hoon;Oh, Sehyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.125-133
    • /
    • 2016
  • In order to obtain high-resolution seafloor images, research on SA (Synthetic Aperture) processing and the development of related underwater systems have been performed in many countries. Recently the SA processing is also recognized as an important technique in Korea and researchers started related basic study. However, most previous studies ignored the Doppler effect by a moving receiver array. In this paper reconstructed SAS (Synthetic Aperture Sonar) images and position errors are analyzed according to the speed of a moving array for understanding its moving effect on the SAS images. In the analysis the spatial frequency domain interpolation algorithm is used. The results show that as the moving speed of the array increases the estimated position error also increases and image distortion gets worse when we do not consider the array motion. However, if the compensated receiver signals considering the array motion are used the position error and image distortion can be eliminated. In conclusion a signal processing scheme which compensates the Doppler effect is necessary especially in the condition where the array speed is over 1 m/s.

Determinate Real-Time Position and Attitude using GPS/INS/AT for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/INS/AT를 이용한 실시간 위치/자세 결정)

  • Han, Joong-Hee;Kwon, Jay-Hyoun;Lee, Im-Pyeong;Choi, Kyoung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.531-537
    • /
    • 2010
  • Real-time Aerial Monitoring System performs the rapid mapping in an emergency situation so that the geoinformation could be constructed in near real time. In this system, the position and attitude information from GPS/INS integration algorithm is used to perform the aerial triangulation(AT) without GCPs. Therefore, if we obtain Exterior Orientation(EO) estimates from AT sequentially, EO are used as the measurements in the Kalman filter. In this study, we simulate the GPS/IMS/Image data for an UAV-based aerial monitoring system and compare the GPS/INS/AT with and without from AT. Comparative analysis showed that result from the GPS/INS/AT with EO update is more accurate than without the update. However, when the vehicle turns, the position error significantly increases which need more analysis in the future.

Sentence Recommendation Using Beam Search in a Military Intelligent Image Analysis System (군사용 지능형 영상 판독 시스템에서의 빔서치를 활용한 문장 추천)

  • Na, Hyung-Sun;Jeon, Tae-Hyeon;Kang, Hyung-Seok;Ahn, Jinhyun;Im, Dong-Hyuk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.521-528
    • /
    • 2021
  • Existing image analysis systems in use in the military field are carried out by readers analyzing and identifying images themselves, writing and disseminating related content, and in this process, repetitive tasks are frequent, resulting in workload. In this paper, to solve the previous problem, we proposed an algorithm that can operate the Seq2Seq model on a word basis, which operates on a sentence basis, and applied the Attention technique to improve accuracy. In addition, by applying the Beam Search technique, we would like to recommend various current identification sentences based on the past identification contents of a specific area. It was confirmed through experiments that the Beam Search technique recommends sentences more effectively than the existing greedy Search technique, and confirmed that the accuracy of recommendation increases when the size of Beam is large.

Cluster Cell Separation Algorithm for Automated Cell Tracking (자동 세포 추적을 위한 클러스터 세포 분리 알고리즘)

  • Cho, Mi Gyung;Shim, Jaesool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.259-266
    • /
    • 2013
  • An automated cell tracking system is used to automatically analyze and track the changes in cell behavior in time-lapse cell images acquired using a microscope with a cell culture. Clustering is the partial overlapping of neighboring cells in the process of cell change. Separating clusters into individual cells is very important for cell tracking. In this study, we proposed an algorithm for separating clusters by using ellipse fitting based on a direct least square method. We extracted the contours of clusters, divided them into line segments, and then produced their fitted ellipses using a direct least square method for each line segment. All of the fitted ellipses could be used to separate their corresponding clusters. In experiments, our algorithm separated clusters with average precisions of 91% for two overlapping cells, 84% for three overlapping cells, and about 73% for four overlapping cells.

An Estimating Algorithm of Vehicle Collision Speed Through Images of Blackbox (블랙박스 영상 분석을 통한 차량 충돌 속도 연산 알고리즘에 대한 융복합 연구)

  • Ko, Kwang-Ho
    • Journal of Digital Convergence
    • /
    • v.16 no.9
    • /
    • pp.173-178
    • /
    • 2018
  • The vehicle collision speed in mid and high range can be checked by EDM(Event Driven memory) data recorded when the air bag works. But it's difficult to estimate the low speed of vehicle collision. And estimating the speed is important because the injury level can be changed by the impact speed. The study proposed an estimating algorithm by analysing the images recorded in car blackbox instrument. Low speed rear collision accidents simulated with wire winding motor for various vehicle types. The study estimated the impact speed with the ratio of the distance change between two vehicles and the length change of the number plate of front vehicle. The closer the vehicles are, the larger the plate length is. You can estimate the impact speed with the ratio. The impact speed is calculated with the initial distance for a specific length of number plate in the algorithm. The results can be applied to the linear rear collision because the angle of impact was not considered in this study.

Adaptive Denoising for Low Light Level Environment Using Frequency Domain Analysis (주파수 해석에 따른 저조도 환경의 적응적 잡음제거)

  • Yi, Jeong-Youn;Lee, Seong-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.128-137
    • /
    • 2012
  • When a CCD camera acquires images in the low light level environment, not only the image signals but also noise components are amplified by the AGC (auto gain control) circuit. Since the noise level in the images acquired in the dark is very high, it is difficult to remove noise with existing denoising algorithms that are targeting the images taken in the normal light condition. In this paper, we proposed an adaptive denoising algorithm that can efficiently remove significant noises caused by the low light level. First, the window including a target pixel is transformed to the frequency domain. Then the algorithm compares the characteristics of equally divided four frequency bands. Finally the noises are adaptively removed according to the frequency characteristics. The proposed algorithm successfully improves the quality of low light level images than the existing algorithms do.

Preprocessing Effect by Using k-means Clustering and Merging .Algorithms in MR Cardiac Left Ventricle Segmentation (자기공명 심장 영상의 좌심실 경계추출에서의 k 평균 군집화와 병합 알고리즘의 사용으로 인한 전처리 효과)

  • Ik-Hwan Cho;Jung-Su Oh;Kyong-Sik Om;In-Chan Song;Kee-Hyun Chang;Dong-Seok Jeong
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.55-60
    • /
    • 2003
  • For quantitative analysis of the cardiac diseases. it is necessary to segment the left-ventricle (LY) in MR (Magnetic Resonance) cardiac images. Snake or active contour model has been used to segment LV boundary. However, the contour of the LV front these models may not converge to the desirable one because the contour may fall into local minimum value due to image artifact inside of the LY Therefore, in this paper, we Propose the Preprocessing method using k-means clustering and merging algorithms that can improve the performance of the active contour model. We verified that our proposed algorithm overcomes local minimum convergence problem by experiment results.