• Title/Summary/Keyword: illuminating power

Search Result 1,299, Processing Time 0.024 seconds

A Study on the Mathematical Modeling and Constant Current Adaptive Controller Design for Power LEDs (파워 LED의 수학적 모델링 및 정전류 적응 제어기 설계에 관한 연구)

  • Kim, Eung-Seok;Kim, Young-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.8-13
    • /
    • 2011
  • In this paper, a mathematical model of the power LED system including the drive circuit will be presented to control the power LEDs current. Using this mathematical model, the constant current adaptive controller will be designed. A constant current drive circuit for power LEDs will be configured using Buck-type converter. Precise constant current controller design is enabled by presenting the mathematical model of power LEDs including the current driving circuits. Using the mathematical model of power LEDs and its drive circuits, the constant current adaptive controller will be designed to obtain the robustness for the parameter uncertainties. In order to verify the validity of the proposed controller, computer simulations are performed.

System Loss Improvement through Proper Location of Active and Reactive Power Apparatus (유무효전력설비의 적소투입을 통한 전력손실개선)

  • 이상중
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.77-80
    • /
    • 2000
  • This paper presents a method for improving the power loss through optimal location of active or reactive power apparatus. The paper introduces the los sensitivities which imply the variation of the power loss with respect to the incremental bus power P, Q and uses them as the investment information for the active and reactive power apparatus. Power apparatus are invested, by the priority of loss sensitivities indices given for each bus.

  • PDF

A Study on Benefit Sides of Demand Response Customer Baseline with Outdoor Temperature Variable about Load Aggregator (수요관리사업자에 대한 외부온도 변화에 따른 수요반응 CBL의 편익에 관한 연구)

  • Kim, Seong-Cheol;Song, Ha-Na
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.44-50
    • /
    • 2014
  • This paper describes reasonable methods by considering change of outdoor temperature into Customer Baseline Load(CBL) of Demand Resources in Smart Demand Resource Market, which controls peak power demand and maintains reliability of power system. The Smart Demand Resouce Market, which KPX(Korea Power Exchange) implement, is explained and then effects for CBL calculated by considering temperature correction factor are established. Finally, four methods for calculation of CBL are proposed and those results are compared and analyzed.

Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink

  • Ro, Kyoung-Soo;Choi, Joon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • This paper presents a pitch angle controller of a grid-connected wind turbine system for extracting maximum power from wind and implements a modeling and simulation of the wind turbine system on MATLAB/Simulink. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, and power coefficient with wind speed when the wind turbine is operated under the maximum power control algorithm. The objective of pitch angle control is to extract maximum power from wind and is achieved by regulating the blade pitch angle during above-rated wind speeds in order to bypass excessive energy in the wind. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction during above-rated wind speeds and effectiveness of the proposed controller would be satisfactory.

Short-term Wind Farm Power Forecasting Using Multivariate Analysis to Improve Wind Power Efficiency (풍력발전 설비 효율화를 위한 다변량 분석을 이용한 풍력발전단지 단기 출력 예측 방법)

  • Wi, Young-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.54-61
    • /
    • 2015
  • This paper presents short-term wind farm power forecasting method using multivariate analysis and time series. Based on factor analysis, the proposed method makes new independent variables which newly composed by raw independent variables such as wind speed, ramp rate, wind power. Newly created variables are used in the time series model for forecasting wind farm power. To demonstrate the improved accuracy, the proposed method is compared with persistence model commonly used as reference in wind power forecasting using data from Jeju Island. The results of case studies are presented to show the effectiveness of the proposed forecasting method.

Investigation and Analysis of Interruption Characteristics for Industrial Customers

  • Choi, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.45-52
    • /
    • 2007
  • Electric power is an important element in any modern economy. The availability of a reliable power supply at a reasonable cost is important for the economic growth and development of a country. Electric power utilities throughout the world therefore strive to meet customer demands economically with high quality and reliability. As the power industry moves towards open competition, therefore, there has been a call for a methodology by which to evaluate power system reliability through the use of customer interruption characteristics. This paper presents the results of an investigation and analysis of interruption characteristics of an industrial customer in Korea. This study used a direct visit survey to determine the investigation and analysis of electric service quality and the characteristics of industrial customers in Korea. A customer survey conducted throughout Korea via personal interviews of 660 sample customers is presented here. Variation according to characteristics of interruption such as duration, time of day, frequency and day of interruption was also investigated

Development of an Intelligent Power Plant Operating State Monitoring System (발전소 설비 운영상태 지능감시 시스템 개발)

  • Hong, Chang-Ho;Kim, Seok-Hyun;Lee, Seung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • For safe and stable operations of power plants, it is essential to monitor closely crucial measurement values related to power plant trips. In this paper, an intelligent power plant operating state monitoring technique enabling the operating crew member to monitor conveniently the status of the important measurement values and to perceive almost instantly the significance of the implications of those measurement values is developed. The proposed technique is called a "POST(Plant Operating State Tracking) Chart" technique and provides the foundations in developing an intelligent and integrated power plant operating state monitoring support system called the "P-OASIS"(Plant Operation Assessment and Support Intelligent System). The P-OASIS is applied to a thermal power plant of 500[MW] capacity and exhibited impressive performances.

A Study on the Impact of the Impedance Change of 345[kV] Power Transformers on Overall System Performance (345[kV] 전력용 변압기 %임피던스 변화에 따른 계통영향 분석)

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Baek, Seung-Mook;Song, Ji-Young;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.140-149
    • /
    • 2011
  • This paper deals with the impact analysis of the impedance change of 345/154[kV] power transformers on the KEPCO system's overall performance. Through the steady-state and dynamic analysis of power system, the maximum available impedance of power transformers were determined. Checking violation of short-circuit current ratings and transformer overload, parallel operation of power transformers, calculation of voltage variation ratio according to the impedance changes of power transformers are included in the steady-state analysis. In addition, transient and voltage stability analysis are also performed in the study. Available magnitudes to be able to change the impedance of the transformers in KEPCO system are finally determined in the paper.

Power Quality Analysis of Autotransformer-fed Railway System Considering Installation Position of Shunt Active Power Filter (병렬 능동전력필터 위치에 따른 전기철도 AT급전 시스템의 전기품질 비교)

  • Han, Jung-Ho;Park, Han-Eol;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.60-69
    • /
    • 2011
  • This paper presents a power quality compensation of the autotransformer-fed railway system using Matlab/SimPowerSystem and especially investigates two installation methods of the shunt active power filter (SAPF) along the autotransformer-fed railway systems; one configuration describes the SAPF installed at the substation and the other is the SAPF at the sectioning post. Also, the novel SAPF control algorithms based on the synchronous reference frame are proposed. A comparative study on two SAPF configurations and the corresponding control algorithms is investigated comprehensively through the case study.

A Study on the Application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm

  • Hur, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.97-103
    • /
    • 2015
  • This paper introduces two on-going projects for DC high temperature superconducting (HTS) cable systems in South Korea. This study proposes the application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm. In order to develop the superconducting DC transmission system model based on HTS power cables, the maximum transfer limits from offshore wind farm are estimated and the system marginal price (SMP) calculated through a Two-Step Power Transfer (TSPT) model based on PV analysis and DC-optimal power flow. The proposed TSPT model will be applied to 2022 KEPCO systems with offshore wind farms.