• Title/Summary/Keyword: illuminating power

Search Result 1,299, Processing Time 0.024 seconds

The Dual Design of Fuel Cell Hybrid Power System using Dual Converter PCS (1.5kW 연료전지 복합발전 시스템의 듀얼 컨버터 설계)

  • Shin, Soo-Cheol;Lee, Hee-Jun;Hong, Suk-Jin;Kim, Hak-Sung;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.67-75
    • /
    • 2013
  • In this paper, parallel input/serial output dual converter is designed appropriately for fuel cell hybrid power system. In case of proposed converter, zero voltage switching condition is designed without additional resonance device using leakage inductance of transformer and output capacitance of switch, and zero voltage switching method is used. Also, the system method is for increasing power by connecting half-bridge in parallel and increasing output voltage by connecting secondary output of transformer in serial. Through this method we can increase power and decrease volume of system. So in this paper, dual converter is designed. 1.5kW fuel cell hybrid power system was implemented, and system operation and stability was verified through experiment.

A Study on the Effect of Resonant Coil Size and Load Resistance on the Transmission Efficiency of Magnetic Resonance Wireless Power Transfer System (공진 코일의 크기와 부하 저항이 자계 공명 무선 전력 전송 장치의 전달 효율에 주는 영향에 관한 연구)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, the wireless power transfer system using the magnetic resonance was designed and the effect of resonant coil radius and load resistance to this system was analyzed by the circuit analysis method. As a result, the calculated transmitted-power is similar to measured one, and the coil size has a small effect to the coupling coefficients in the resonant frequency band. In addition, the fact that the calculated transmitted-power according to the source frequency is similar to measured one confirms that the circuit analysis methode in this paper is valid. The input side transmission efficiency ${\eta}_i$ including only the loss in the power transfer circuit is almost 90[%] with the large coil in the 10[cm] transfer distance, and 65[%] with the small coil in 1[cm]. The source side transmission efficiency ${\eta}_s$ is 30~40[%] at both coil when load resistance below 4.7[${\Omega}$] has been connected. Considering that the maximum ${\eta}_s$ is 50[%], this is valid in the practical applications.

A Study on the Electric Shock due to Submerged Power Source (침수 상용전원에 의한 감전위험성 검토)

  • Jung, Jong-Wook;Jung, Jin-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.71-76
    • /
    • 2007
  • This paper describes a risk assessment of electric shock based on a experiment which demonstrates a submerged commercial power source. For the experiment a water tank was made and an outlet was installed on an interior wall. After filling the tank with a conductive water solution, the electric potential was measured with the distance, the direction from the power source, the conductivity and the level of the water solution. As a result, the potential distribution due to the outlet energized and exposed to the water solution depends on the distance from the submerged power source, however, the direction from the power source, the conductivity and the level of the water solution seemed to scarcely affected on the electrical shock risk.

A Study on the Calculation of Transmission Current-Carrying Capacity by Horizontal Arrangement Type in the Installation Methods of 154kV XLPE 600㎟ Power Cable Buried Ducts in Ground (154kV XLPE 600㎟ 지중관로 수평배열 형태별 허용전류용량 산정에 관한 연구)

  • Kim, Se-Dong;Yoo, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.53-58
    • /
    • 2016
  • The underground transmission lines which have been built to expand the suppling facilities will be continuously accompanying with high growth of the increase of power demand in the metropolitan area in recent years. So, it is necessary to maximize the ability and reliability of power supply with the current-carrying capability of the underground transmission lines. Design criteria of KEPCO is to be presented and used frequently. But it has to be studied about the installation methods of power cable buried in ground. In this study, we used the program for calculating the current-carrying capability of underground transmission power cables. We estimated the maximum permissible current values by the horizontal arrangement in the installation methods of power cable(154kV XLPE $600mm^2$) buried ducts in ground. To see the general tendency of the analysis, we researched a statistical analysis with such parameters as the maximum permissible current values. Through the regression analysis, we analyze the most highly values of the maximum permissible current on the Ra type duct arrangement.

A Proposed High Voltage Distribution System of the Customer Inside for Reducing Power Loss (수용가내부 고압배전시스템의 전력손실감소효과)

  • Park, Hyung-Joon;Yun, Man-Soo;Chung, Chan-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.39-44
    • /
    • 2005
  • This paper is about the new distribution system of the electric customer inside. The power loss in the distribution system of the customer is disregarded and rarely managed so for. But, economically, this loss is not small quantity to ignore. So, in this paper, we suggest that the new distribution system of the electric customer inside by simply changing the locations of power transformer and other power facilities which is located inside of the customer. And we also show that the power loss is decreased with this systematic changing by approximated calculation.

Lightning Surges Transferred to Low-voltage AC Power Lines through Distribution Transformers (배전용 변압기를 통하여 저압 전원선으로 전파되는 뇌서지)

  • 이복희;이동문;이수봉
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.94-99
    • /
    • 2003
  • A strong need to improve the quality of electric power is increased because of increasing use of the sensitive and small-sized electronic devices. The transient overvoltages on low-voltage AC power distribution systems are induced by direct or indirect lightning return strokes, and they can cause damage and/or malfunction of the utility systems for home automation, office automation and factory automation as well as medical equipment. The behaviors of lightning overvoltages transferred through the transformer to the low voltage AC power distribution systems were experimentally investigated using a Marx generator. The surge voltages in low-voltage ac power systems are rarely limited by the application of the surge arrester to the primary side of distribution transformer and a custom service ground.

Design and Fabrication of Rectenna for Microwave Wireless Power Transmission (마이크로파 무선전력전송을 위한 렉테나 설계와 구현)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.43-48
    • /
    • 2006
  • In this paper, the rectenna converting 2.45[GHz] microwave into DC power is designed and fabricated for wireless power transmission using microwave and the methode for impedance matching and tuning are proposed in order to maximize RF-DC conversion efficiency. The fabricated rectenna can be easily tuned by using a broad open stub and has the RF-DC conversion efficiency up to 59[%] when the 5[dBm] input power is applied. The 2.2[V], 1.5[mW] DC level, in the 1[m] distance between the transmitter and the receiver can be obtained and this value is avaliable in the small power digital system.

A Study on Waveform Analysis of Input Current for Novel Boost AC-DC Converter of High Power Factor (새로운 고역률 승압형 AC-DC 컨버터의 입력전류 파형분석에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.102-108
    • /
    • 2005
  • In this paper, authors propose novel boost AC-DC converter of high power factor and analyze for waveform and harmonics component of input current. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of at input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of conventional converter of high power factor. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

Load current and Temperature measurement system for Measuring the Degradation of Power cable (전력케이블의 열화측정을 위한 부하전류 및 온도측정 시스템)

  • Park, Yong-Kyu;Cho, Young-Seek;Lee, Kwan-Woo;Um, Kee-Hong;Park, Dae-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, there has been a surge in interest in equipment diagnosis and monitoring technology from the perspective of providing quality electricity in terms of reliability and safety. In order to meet the electrical demands of consumers, reliability of power supply needs to be maintained. For this purpose, a monitoring system for power cable is very important. Since real-time measuring equipment has many advantages, it is highly applicable. By measuring the load current and the surface temperature of power cables, we have monitored and identified the deterioration phenomena of power cables in operation. Since direct measurement of the cable conductor temperature is not easy, we have measured the surface temperature instead, and converted that temperature to obtain the conductor temperature of the cables. In addition, we have designed a system to detect the deterioration processes of the power cables in operation.

Development of Heating and Cooling System with New Heat Exchange Cycle for High Efficiency and Peak Power Reduction Using Real time Constant Refrigerant Pressure Control (실시간 일정압력 제어기술을 적용한 냉난방장치의 피크부하 저감과 에너지 효율 향상을 위한 시스템 개발)

  • Choi, Sun-Young;Lee, Young-Kug;Choi, Myeong-Gwang;Choi, Tae-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.53-58
    • /
    • 2015
  • Systemic heating and cooling air conditioning systems are popular in various industrial fields and even home. Recently, the rate of supply of this kind of multi-heat pump has been increased under ESCO financing supporting system. Generally the heat pumping system has a structural simplicity and easy installation benefits. and has good running efficiency under normal designed condition. But under extreme climate condition (over $+30^{\circ}C$, under $-10^{\circ}C$), this system exposes abnormal power consumption. It causes high progressive electric power rates and resultant peak power capacity of power plant. In this paper, a novel system concept of buffering refrigerant accumulator and constant pressure control system to relieve peak power load is proposed and this system's utility is verified with an prototype experimental system.