• 제목/요약/키워드: ignition delay

검색결과 371건 처리시간 0.03초

단일 유화액적에서의 분위기 온도와 액적크기에 따른 자발화와 미소폭발의 영향 (Effect of Ambient Temperature and Droplet Size of a Single Emulsion Droplet on Auto-ignition and Micro-explosion)

  • 정인철;이경환
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.49-55
    • /
    • 2007
  • The characteristics of auto-ignition and combustion process of a single droplet of emulsified fuel suspended in a high-temperature air chamber have been investigated experimentally with various droplet sizes, surrounding temperatures, and water contents. The used fuels was n-Decane and it was emulsified with varied water contents whose maximum is 30%. The high-speed camera has been adopted to measure the ignition delay and flame life time. It was also applied to observe micro-explosion behaviors. The increase of droplet size and chamber temperature cause the decrease of the ignition delay time and flame life-time. As the water contents increases, the ignition delay time increases and the micro-explosion behaviors are strengthened. The starting timings of micro-explosion and fuel puffing are compared for different droplet sizes and the amount of water contents.

대응탄 개방형 추진장치용 점화기개발 (Development of Ignitor of Open-Type Propulsion Device for Korean Interceptor)

  • 권순길;김창기;윤상용
    • 한국군사과학기술학회지
    • /
    • 제14권6호
    • /
    • pp.1166-1170
    • /
    • 2011
  • For developing the ignition device for the interceptor of Korean active protection system, the design parameters of the ignition device which should have a short ignition delay time and sufficient energy for propellant ignition were studied. The electric primer instead of mechanical primer was adopted for deceasing delay time, and ignition code was used for decreasing the time difference of flame propagation from the flame holes. The developed ignition device showed the ignition delay time of a few ms. When the designed ignition device was applied to the open-type propulsion devices, the stable interior ballistic characteristic was showed in a firing test.

혼합 액체 연료인 항공유의 점화지연시간 측정에 관한 연구 (Measurement of Ignition Delay Time of Jet Aviation Fuel)

  • 한희선;왕위엔강;김철진;손채훈
    • 한국연소학회지
    • /
    • 제22권3호
    • /
    • pp.35-40
    • /
    • 2017
  • Jet aviation fuel is one of liquid fuel which are used in aircraft engines. Korean domestic jet fuel, called Jet A-1, is tested for measurement of ignition delay time by using a shock tube manufactured recently. The temperature varies from 680 to 1250 K and the pressure and equivalence ratio of Jet A-1/air are fixed 20 atm and 1.0, respectively, for this experiment. The ignition delay time data of Jet A-1 are compared with those of Jet A, which has similar properties to Jet A-1. The behavior of negative-temperature-coefficient (NTC) is observed in the temperature range 750-900 K. In addition, ignition delay time of iso-octane is measured, which is one of the surrogate components for jet aviation fuel. The experimental data are compared and validated with the previous results from the literatures. A surrogate fuel for the present Jet A-1 consists of 45.2% n-dodecane, 32.1% iso-octane, and 22.7% 1,3,5-trimethylbenzene. The predicted ignition delay time for the surrogate agrees well with the measured one for Jet A-1.

충격파관을 이용한 분무연료의 착화지연에 관한 연구 (A study on ignition delays of sprays using a shock tube)

  • 정진도;류정인;수곡행부
    • 오토저널
    • /
    • 제11권6호
    • /
    • pp.48-56
    • /
    • 1989
  • A shock tube technique was developed in which a freely falling droplets column produced by an ultrasonic atomizer was ignited behind reflected shock. In the present study, the effects of turbulent mixing on the ignition delay of a cetane was decided, also, ignition process was investigated. For the purpose of disturbance of droplets column and mixing, authors installed turbulent lattice in shock tube. Usually, the ignition delay is so called Arrhenius plot which found break point in the Arrhenius plot on the high temperature side. The rate of misfiring increased rapidly below 1080K, but ignition took place from 838k and luminous flame was seen to spread over the whole section by turbulent lattice. Length, from end plate to turbulent lattice, was varied with 60,40,20mm. Also, ignition process was detected by Photo transistor. As a result, it was found that physical factors changed ignition delay greatly and turbulent mixing had a considerable effects in the ignition process.

  • PDF

Shock Tube and Modeling Study of the Ignition of Propane

  • 김길영;신권수
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권3호
    • /
    • pp.303-307
    • /
    • 2001
  • The ignition of propane was investigated behind reflected shock waves in the temperature range of 1350-1800 K and the pressure range of 0.75-1.57 bar. The ignition delay time was measured from the increase of pressure and OH emission in the C3H8-O2-Ar system. The relationship between the ignition delay time and the concentrations of propane and oxygen was determined in the form of mass-action expression with an Arrhenius temperature dependence. The numerical calculations were also performed to elucidate the important steps in the reaction scheme of propane ignition using various reaction mechanisms. The ignition delay times calculated from the mechanism of Sung et al.1 were in good agreement with the observed ones.

기체산소/케로신 연소기에서 점화 위치 및 시간에 따른 점화 과정 연구 (Ignition Transition by Ignition Position and time of Gaseous Oxygen/Kerosene Combustor)

  • 송우석;손민;신동수;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.814-819
    • /
    • 2017
  • 본 논문에서는 점화 위치 및 시간에 따른 점화 지연 및 연소 불안정에 미치는 영향을 관찰하는 것이 목표이다. 산화제는 기체 산소를 사용하였고 연료는 액체 케로신을 사용하였다. 점화 지연 및 연소 불안정 정도를 관찰하기 위해 압력 트랜스듀서를 이용하여 정압을 측정하였다. 점화 위치는 분사기 스페이서를 이용하여 변경하였다. 모든 경우의 점화기 작동 시기를 제외한 점화 시퀀스는 동일하게 설정하였고 점화 시간은 25 ms 간격으로 설정하였다. 점화 시간이 늦어질수록 초기 압력 피크값과 점화 지연 시간이 증가하는 경향을 보였다. 점화 위치가 분사기로부터 멀어질수록 초기 압력 피크 이후 불안정한 화염 발달 구간이 존재하였다.

  • PDF

고속 직분식 디젤 엔진에서의 점화지연시기 예측 (Prediction of Ignition Delay for HSDI Diesel Engine)

  • 임재만;김용래;온형석;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1704-1709
    • /
    • 2004
  • New reduced chemical kinetic mechanism for prediction of autoignition process of HSDI diesel engine was investigated. For precise prediction of the ignition characteristics of diesel fuel, mechanism coefficients were fitted by the experimental results of ignition delay of diesel spray in a constant volume vessel. Ignition delay of diesel engine on various operation condition was calculated based on the new reduced chemical mechanism. The calculation results agreed well with experimental data.

  • PDF

혼합비율 및 압력 변화가 바이오매스 합성가스의 점화지연 시간에 미치는 영향 (Effects of Fuel Composition and Pressure on Autoignition Delay of Biomass Syngas)

  • 심태영;강기중;;최경민;김덕줄
    • 대한기계학회논문집B
    • /
    • 제39권12호
    • /
    • pp.945-952
    • /
    • 2015
  • 본 연구에서는 바이오매스 합성가스를 모사하여 합성가스의 주요성분에 따른 자착화 특성을 실험 및 수치적으로 고찰하였으며, 온도, 혼합물의 조성, 압력의 변화가 자착화 특성에 미치는 영향을 분석하였다. 충격파관(Shock Tube)을 이용하여 모사 합성가스의 점화지연 시간을 측정하였고, 수치해석은 실험결과 검증과 연소과정 중 중간화학종 분석을 위해 상용프로그램인 CHEMKIN-PRO를 사용하였다. 모든 온도 조건에서 혼합물 내의 수소의 몰 비율이 증가함에 따라 점화지연 시간이 감소하는 현상을 확인할 수 있었다. 1150K 이상의 온도 조건에서 압력이 증가함에 따라 점화지연 시간이 감소하는 현상을 확인 할 수 있었다. 하지만 1150K 이하의 온도 조건에서는 압력이 증가함에 따라 점화지연 시간이 증가하는 현상을 확인할 수 있었다.

고온벽면에서의 액적연료의 증발 및 착화에 관한 연구 (A Study on the Evaporation and Ignition of Single Fuel Droplet on the Hot Surface)

  • 송규근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.132-137
    • /
    • 2002
  • Recently, impinging spray is used for atomization of diesel engine, but it bring on adhesion of fuel. Therefore, we studied about droplet behavior on high temperature plate changing the size of droplet, surface temperatures, and surface roughness of plate. In this study, We studied to confirm experimentally about mechanism of evaporation and ignition process of single fuel droplet. We observed evaporation time, evaporation appearance and ignition delay time by the photopraphs of 8mm video camera. Experimental results are summarized as follows: 1. The boiling point of fuel affect a evaporation and ignition process. 2. The surface roughness affect a evaporation time. 3. The ignition delay time relate to evaporation characteristic.

축소 반응 메카니즘으로부터 예혼합 화염 및 자발화 계산 (Premixed Flames and Auto-ignition Computations with the Short Chemical Mechanism)

  • 이수각;이기용
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.279-281
    • /
    • 2012
  • A short chemical mechanism was developed with the chemical model reduction strategy based on the use of Simulation Error Minimization Connectivity Method(SEM-CM). We examined the accuracy resulting from using this mechanism, as compared with the full mechanism, for premixed flames and auto-ignition of methane-air mixture under high pressures. These comparisons are in good agreement, but it has a little divergence to predict the ignition delay time at high pressure conditions as compared with experiment results.

  • PDF