• Title/Summary/Keyword: identification task

Search Result 335, Processing Time 0.019 seconds

Fusion algorithm for Integrated Face and Gait Identification (얼굴과 발걸음을 결합한 인식)

  • Nizami, Imran Fareed;Hong, Sug-Jun;Lee, Hee-Sung;Ann, Toh-Kar;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.15-18
    • /
    • 2007
  • Identification of humans from multiple view points is an important task for surveillance and security purposes. For optimal performance the system should use the maximum information available from sensors. Multimodal biometric systems are capable of utilizing more than one physiological or behavioral characteristic for enrollment, verification, or identification. Since gait alone is not yet established as a very distinctive feature, this paper presents an approach to fuse face and gait for identification. In this paper we will use the single camera case i.e. both the face and gait recognition is done using the same set of images captured by a single camera. The aim of this paper is to improve the performance of the system by utilizing the maximum amount of information available in the images. Fusion is considered at decision level. The proposed algorithm is tested on the NLPR database.

  • PDF

Locating and identifying model-free structural nonlinearities and systems using incomplete measured structural responses

  • Liu, Lijun;Lei, Ying;He, Mingyu
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.409-424
    • /
    • 2015
  • Structural nonlinearity is a common phenomenon encountered in engineering structures under severe dynamic loading. It is necessary to localize and identify structural nonlinearities using structural dynamic measurements for damage detection and performance evaluation of structures. However, identification of nonlinear structural systems is a difficult task, especially when proper mathematical models for structural nonlinear behaviors are not available. In prior studies on nonparametric identification of nonlinear structures, the locations of structural nonlinearities are usually assumed known and all structural responses are measured. In this paper, an identification algorithm is proposed for locating and identifying model-free structural nonlinearities and systems using incomplete measurements of structural responses. First, equivalent linear structural systems are established and identified by the extended Kalman filter (EKF). The locations of structural nonlinearities are identified. Then, the model-free structural nonlinear restoring forces are approximated by power series polynomial models. The unscented Kalman filter (UKF) is utilized to identify structural nonlinear restoring forces and structural systems. Both numerical simulation examples and experimental test of a multi-story shear building with a MR damper are used to validate the proposed algorithm.

Time-varying physical parameter identification of shear type structures based on discrete wavelet transform

  • Wang, Chao;Ren, Wei-Xin;Wang, Zuo-Cai;Zhu, Hong-Ping
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.831-845
    • /
    • 2014
  • This paper proposed a discrete wavelet transform based method for time-varying physical parameter identification of shear type structures. The time-varying physical parameters are dispersed and expanded at multi-scale as profile and detail signal using discrete wavelet basis. To reduce the number of unknown quantity, the wavelet coefficients that reflect the detail signal are ignored by setting as zero value. Consequently, the time-varying parameter can be approximately estimated only using the scale coefficients that reflect the profile signal, and the identification task is transformed to an equivalent time-invariant scale coefficient estimation. The time-invariant scale coefficients can be simply estimated using regular least-squares methods, and then the original time-varying physical parameters can be reconstructed by using the identified time-invariant scale coefficients. To reduce the influence of the ill-posed problem of equation resolving caused by noise, the Tikhonov regularization method instead of regular least-squares method is used in the paper to estimate the scale coefficients. A two-story shear type frame structure with time-varying stiffness and damping are simulated to validate the effectiveness and accuracy of the proposed method. It is demonstrated that the identified time-varying stiffness is with a good accuracy, while the identified damping is sensitive to noise.

Plant Disease Identification using Deep Neural Networks

  • Mukherjee, Subham;Kumar, Pradeep;Saini, Rajkumar;Roy, Partha Pratim;Dogra, Debi Prosad;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.233-238
    • /
    • 2017
  • Automatic identification of disease in plants from their leaves is one of the most challenging task to researchers. Diseases among plants degrade their performance and results into a huge reduction of agricultural products. Therefore, early and accurate diagnosis of such disease is of the utmost importance. The advancement in deep Convolutional Neural Network (CNN) has change the way of processing images as compared to traditional image processing techniques. Deep learning architectures are composed of multiple processing layers that learn the representations of data with multiple levels of abstraction. Therefore, proved highly effective in comparison to many state-of-the-art works. In this paper, we present a plant disease identification methodology from their leaves using deep CNNs. For this, we have adopted GoogLeNet that is considered a powerful architecture of deep learning to identify the disease types. Transfer learning has been used to fine tune the pre-trained model. An accuracy of 85.04% has been recorded in the identification of four disease class in Apple plant leaves. Finally, a comparison with other models has been performed to show the effectiveness of the approach.

Interface of Tele-Task Operation for Automated Cultivation of Watermelon in Greenhouse

  • Kim, S.C.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.511-516
    • /
    • 2003
  • Computer vision technology has been utilized as one of the most powerful tools to automate various agricultural operations. Though it has demonstrated successful results in various applications, the current status of technology is still for behind the human's capability typically for the unstructured and variable task environment. In this paper, a man-machine interactive hybrid decision-making system which utilized a concept of tole-operation was proposed to overcome limitations of computer image processing and cognitive capability. Tasks of greenhouse watermelon cultivation such as pruning, watering, pesticide application, and harvest require identification of target object. Identifying water-melons including position data from the field image is very difficult because of the ambiguity among stems, leaves, shades. and fruits, especially when watermelon is covered partly by leaves or stems. Watermelon identification from the cultivation field image transmitted by wireless was selected to realize the proposed concept. The system was designed such that operator(farmer), computer, and machinery share their roles utilizing their maximum merits to accomplish given tasks successfully. And the developed system was composed of the image monitoring and task control module, wireless remote image acquisition and data transmission module, and man-machine interface module. Once task was selected from the task control and monitoring module, the analog signal of the color image of the field was captured and transmitted to the host computer using R.F. module by wireless. Operator communicated with computer through touch screen interface. And then a sequence of algorithms to identify the location and size of the watermelon was performed based on the local image processing. And the system showed practical and feasible way of automation for the volatile bio-production process.

A pilot study of an automated personal identification process: Applying machine learning to panoramic radiographs

  • Ortiz, Adrielly Garcia;Soares, Gustavo Hermes;da Rosa, Gabriela Cauduro;Biazevic, Maria Gabriela Haye;Michel-Crosato, Edgard
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.187-193
    • /
    • 2021
  • Purpose: This study aimed to assess the usefulness of machine learning and automation techniques to match pairs of panoramic radiographs for personal identification. Materials and Methods: Two hundred panoramic radiographs from 100 patients (50 males and 50 females) were randomly selected from a private radiological service database. Initially, 14 linear and angular measurements of the radiographs were made by an expert. Eight ratio indices derived from the original measurements were applied to a statistical algorithm to match radiographs from the same patients, simulating a semi-automated personal identification process. Subsequently, measurements were automatically generated using a deep neural network for image recognition, simulating a fully automated personal identification process. Results: Approximately 85% of the radiographs were correctly matched by the automated personal identification process. In a limited number of cases, the image recognition algorithm identified 2 potential matches for the same individual. No statistically significant differences were found between measurements performed by the expert on panoramic radiographs from the same patients. Conclusion: Personal identification might be performed with the aid of image recognition algorithms and machine learning techniques. This approach will likely facilitate the complex task of personal identification by performing an initial screening of radiographs and matching ante-mortem and post-mortem images from the same individuals.

Developing the Rubric for Measurement in Levels by Areas for the Characteristics of Task Commitment Shown in the Science Gifted (과학 영재의 과제집착력 특성 수준 측정을 위한 루브릭 개발)

  • Jang, Jyungeun;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.7
    • /
    • pp.657-666
    • /
    • 2014
  • To identify the gifted, it is essential to perform overall evaluation on cognitive and affective aspects considering all the characteristics of the science gifted. Nowadays, not only cognitive factors but also affective factors are being emphasized. Among the affective factors of the gifted, the task commitment is an important factor to describe the gifted and their outstanding achievements. From this research, by measuring the characteristics of task commitment shown in the science gifted, this can offer good implications regarding the selection of the gifted and the education. We developed the rubric of the gifted students by analyzing the students' experience of showing task commitment. By applying the rubric, we measured the levels by areas of the characteristics of task commitment shown in the experiences which the science gifted had by deeply exploring the cause or the principle. To better understand the characteristics of the science gifted students' task commitment, each and every students' characteristics were specifically described. The students' task commitment can be measured objectively and effectively by using the measuring tool in the form of rubric based on the characteristics of the task commitment. Specifically describing the students' characteristics on the basis of their performance criteria is the grounds for the level judgment and enhances the understanding of the characteristics of students' task commitment.

The Effective Factors of Professional Learning : Study on Accounting Firms in Korea

  • Song, Youjung;Chang, Wonsup;Chang, Jihyun
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.2
    • /
    • pp.81-94
    • /
    • 2018
  • The purpose of this study is to substantiate the affecting factors of informal learning outcomes for professions in various dimensions of an individual and organization. In specific, the study analyzed the effects of learning motivation, job characteristics, and a supportive learning environment which have on task-related knowledge acquisition, adapting to organization and understanding contexts, relationship formation, and improving self-development-ability. The participants of the study were 261 professionals working at four major accounting firms in South Korea. Multiple regression models were applied step by step for analysis. In this study, the informal learning of professionals working at four major accounting firms is influenced by various factors of learning motivation, job characteristics, and a supportive learning environment. The detailed analysis results were as follows. Firstly, peer-support showed the most positive effect on task-related knowledge acquisition. Secondly, for adapting to organization and understanding contexts, task autonomy showed the greatest effect. Thirdly, peer-support was found to be the most important factor for relationship formation. Fourthly, for improving self-development ability, learning goal orientation showed to be the most important factor. The various factors facilitated the professional learning by empirical identification. The study presented practical implications for creating an effective informal learning support environment.

Operator Capacity Assessment Method for the Supervisory Control of Unmanned Military Vehicle (군사로봇의 감시제어에서 운용자 역량 평가 방법에 관한 연구)

  • Choi, Sang-Yeong;Yang, Ji-Hyeon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.94-106
    • /
    • 2017
  • Unmanned military vehicles (UMVs) will be increasingly applied to the various military operations. These UMVs are most commonly characterized as dealing with "4D" task - dull, dirty, dangerous and difficult with automations. Although most of the UMVs are designed to a high degree of autonomy, the human operator will still intervene in the robots operation, and tele-operate them to achieve his or her mission. Thus, operator capacity, along with robot autonomy and user interface, is one of the important design factors in the research and development of the UMVs. In this paper, we propose the method to assess the operator capacity of the UMVs. The method is comprised of the 6 steps (problem, assumption, goal function identification, operator task analysis, task modeling & simulation, results and assessment), and herein colored Petri-nets are used for the modeling and simulation. Further, an illustrative example is described at the end of this paper.

Multi-Objective Pareto Optimization of Parallel Synthesis of Embedded Computer Systems

  • Drabowski, Mieczyslaw
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.304-310
    • /
    • 2021
  • The paper presents problems of optimization of the synthesis of embedded systems, in particular Pareto optimization. The model of such a system for its design for high-level of abstract is based on the classic approach known from the theory of task scheduling, but it is significantly extended, among others, by the characteristics of tasks and resources as well as additional criteria of optimal system in scope structure and operation. The metaheuristic algorithm operating according to this model introduces a new approach to system synthesis, in which parallelism of task scheduling and resources partition is applied. An algorithm based on a genetic approach with simulated annealing and Boltzmann tournaments, avoids local minima and generates optimized solutions. Such a synthesis is based on the implementation of task scheduling, resources identification and partition, allocation of tasks and resources and ultimately on the optimization of the designed system in accordance with the optimization criteria regarding cost of implementation, execution speed of processes and energy consumption by the system during operation. This paper presents examples and results for multi-criteria optimization, based on calculations for specifying non-dominated solutions and indicating a subset of Pareto solutions in the space of all solutions.