• Title/Summary/Keyword: identification of cultivars

Search Result 169, Processing Time 0.035 seconds

The Use of AFLP Markers for Cultivar Identification in Hydrangea macrophylla

  • Lee, Jae Ho;Hyun, Jung Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.125-130
    • /
    • 2007
  • The principal morphological characters used for identification of hydrangea cultivars are often dependent on agroclimatic conditions. Furthermore, information on the selection or the genetic background of the hydrangea breeding is so rare that a molecular marker system for cultivar identification is needed. Amplified fragment length polymorphism (AFLP) markers were employed for fingerprinting Hydrangea macrophylla cultivars and candidate cultivars of H. macrophylla selected in Korea. One AFLP primer combination was sufficient to distinguish 17 H. macrophylla cultivars and 4 candidate cultivars. The profile of 19 loci that can minimize the error of amplification peak detection was constructed. AFLP markers were efficient for identification, estimation of genetic distances between cultivars, and cultivar discrimination. Based on the observed AFLP markers, genetic relationship was reconstructed by the UPGMA method. Seventeen H. macrophylla cultivars and H. macrophylla for. normalis formed a major cluster, and candidate cultivars selected in Korea formed another cluster.

Identification of Apple Cultivars using Near-infrared Spectroscopy

  • Choi, Sun-Tay;Chung, Dae-Sung;Lim, Chai-Il;Chang, Kyu-Seob
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1624-1624
    • /
    • 2001
  • Near-infrared spectroscopy (NIRS) was used to investigate the possibility for application in identification of apple cultivars. Three apple cultivars ‘Kamhong, Hwahong, and Fuji’ produced in Korea were scanned over the range of 1100-2500nm using NIRS (Infra Alzer 500). Two types of samples were used for scanning; one was apple with skin and the other was apple without skin. For cultivar identification, the NIR absorbance spectrums were analyzed by qualitative calibration in “Sesame” analysis program, and the various influence properties such as sugar contents, acidity, color, firmness, and micro-structure were compared in scanned samples. The ‘Kamhong’ cultivar could be identified from ‘Hwahong’ and ‘Fuji’ cultivars using the cluster model analysis. The test samples in calibration between ‘Kamhong’ and ‘Fuji’ cultivars could be completely identified. The test samples in calibration between ‘Kamhong’ and ‘Hwahong’ cultivars could be identified most of all. But, ‘Hwahong’ and ‘Fuji’ cultivars could not be quite classified each other. The apple skin influenced the identification process of apple cultivars. The samples without skin were more difficult to classify in calibration than the samples with skin. The physicochemical properties of apple cultivars showed like the result of identification in calibration using NIRS. Some physicochemical properties of ‘Kamhong’ cultivar were different from those of the other cultivars. Those of ‘Hwahong’ and ‘Fuji’ cultivars showed. similar to each other. The sucrose contents of ‘Kamhong’ cultivar were higher and the fructose contents and firmness of skin and flesh were lower than those of the others. The hypodermis layer of skin in ‘Kamhong’ cultivar was thinner than those of the others. In this studies, the identification of all apple cultivars by NIRS was not quite accurate because of the physicochemical properties which were different in the same cultivar, and inconsistent patterns by culivars in some properties. To solve these problems in NIRS application for apple cultivar identification, further study should be focused on the use of peculiar properties among the apple cultivars.

  • PDF

Studies on the Identification of Turfgrass by Electrophoresis (SDS-PAGE, PAGIF) (전기영동법 (SDS-PAGE, PAGIF)에 의한 잔디 분류에 관한 연구)

  • 박재복;김영후;이수영
    • Asian Journal of Turfgrass Science
    • /
    • v.5 no.1
    • /
    • pp.11-22
    • /
    • 1991
  • This experiment was executed to investigate the possibility of the application of taxonomic method through the isoelectric focusing with polyacrylamide gel and sodium dodecyl sulfate-polyacrylamide gel electrophoresis with seeds in the identification of turfgrasses. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to investigate the pattern of seed proteins which were extracted from 18 cultivars of cool season turfgrass and 4 cultivars of warm season turfgrass. The isoelectric focusing with polyacrylarnide gel was used to investigate the activity of the three isozymes of esterase, peroxidase and phosphoglucose isomerase which were extracted from 18 cultivars of cool season turfgrass and 4 cultivars of warm season turfgrass. The results were summarized as follows. 1. The difference of the patterns of seed proteins was observed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The identification of intra-genus was easily detected. 2. The three isozymes of esterase, peroxidase and phosphoglucose isomerase were investigated through isoelectric focusing with polyacrylamide gel. As a result, esterase was most effective among three isozymes in the identification of turfgrass cultivars 3. In the past cultivar identification was primarily based on visual morphological characters, but there was a lot of difficulty. If we should use electrophoresis, we will be able to identifvturfgrass cultivars more effectively.

  • PDF

Identification of Nicotiana tabacum Cultivars using Molecular Markers

  • Um, Yu-Rry;Cho, Eun-Jeong;Shin, Ha-Jeong;Kim, Ho-Bang;Seok, Yeong-Seon;Kim, Kwan-Suk;Lee, Yi
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.2
    • /
    • pp.85-93
    • /
    • 2008
  • This report describes a set of seven informative single-nucleotide polymorphisms (SNPs) and one insertion-deletion (INDEL) distributed over 24 cultivars that can be used for tobacco (Nicotiana tabacum L.) cultivar identification. We analyzed 163,000 genomic DNA sequences downloaded from Tobacco Genome Initiative database and assembled 31,370 contigs and 60,000 singletons. Using relatively long contigs, we designed primer sets for PCR amplification. We amplified 61 loci from 24 cultivars and sequenced the PCR products. We found seven significant SNPs and one INDEL among the sequences and we classified the 24 cultivars into 10 groups. SNP frequency of tobacco, 1/8,380 bp, was very low in comparison with those of other plant species, between 1/46 bp and 1/336 bp. For exact identification of tobacco cultivars, many more SNP markers should be developed. This study is the first attempt to identify tobacco cultivars using SNP markers.

Genetic Variation and Identification of RAPD Markers from Some Garlic Cultivars in Korea and Mongolia (한국과 몽고 일부 재배마늘의 유전적 변이와 재배종 특이적 RAPD 마커의 탐색)

  • Bae, Seong-Kuk;Jung, Eun-A;Kwon, Soon-Tae
    • Korean Journal of Plant Resources
    • /
    • v.23 no.5
    • /
    • pp.458-464
    • /
    • 2010
  • Twelve garlic cultivars collected from Korea and Mongolia were evaluated genetic similarity and diversity by RAPD method using oligo-nucleotide random primers. Genomic DNA isolated from twelve garlic cultivars were amplified by polymerase chain reaction using 143 primers, and 55 primers showed polymorphic DNA bands. Among a total of 187 bands amplified by 55 primers, 128 polymorphic bands were subjected to analysis for genetic relationship of garlic cultivars. Garlic cultivars were classified into three groups, such as group-I corresponded to Euiseong, Seosan, Samchuk and Yecheon-A, Yechun-B, Euiseong-norang, Jeongsun, Namdo, Yookback and Danyang cultivars, and group-II to Mongolia and group-III to Daeseo cultivars. Thirty DNA bands showing unique specificity to the specific cultivars are likely to be useful for identification of garlic local cultivars as DNA markers.

Development of ISSR-Derived SCAR Markers for Identification of Jujube Cultivars (대추나무 품종 식별을 위한 ISSR 유래 SCAR 표지 개발)

  • Nam, Jae-Ik;Kim, Chul-Woo;Kim, Sea-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.302-310
    • /
    • 2019
  • Precise and fast identification of crop cultivars is essential for efficient breeding and plant breeders' rights. Traditional methods for identification of jujube cultivars are based on the evaluation of morphological characteristics. However, due to time constraints and environmental influences, it is difficult to distinguish cultivars using only morphological traits. In this study, we cloned fragments from improved inter simple sequence repeats (ISSR) analysis, and developed stably diagnostic sequence-characterized amplified region (SCAR) markers. The specific ISSR bands of jujube cultivars from Dalizao and Boeundaechu were purified, cloned, and sequenced. As a result, four clones labeled 827Dalizao550, 827Boeun750, 846Boeun700, and 847Dalizao850 were identified. In order to investigate whether they were specific for the jujube cultivar, four pairs of SCAR primers were then designed and polymerase chain reaction (PCR) amplifications were conducted to analyze 32 samples, including jujube and sour jujube. In the PCR amplification of the 827Dalizao550 SCAR marker, the specific bands with 550 bp were amplified in six samples (Dalizao, Sandonglizao, Dongzao, Yuanlin No. 2, Suanzao 2, Suanzao 4), but unexpected bands (490 bp) were amplified in the others. Moreover, in the PCR amplification of the 847Dalizao850 SCAR marker, the specific bands with 850 bp were found in three samples (Dalizao, Sandonglizao, and Dongzao) and 900 bp unexpected bands were amplified in five samples (Pozao, Suanzao 1, Suanzao 2, Suanzao 3, Suanzao 4). These results showed that newly developed markers could be useful as a fast and reliable tool to identify jujube cultivars. However, further identification of polymorphic information and the development of SCAR markers are required for the identification of more diverse cultivars.

Genetic Diversity and Identification of Korean Grapevine Cultivars using SSR Markers (SSR마커를 이용한 국내육성 포도 품종의 다양성과 품종 판별)

  • Cho, Kang-Hee;Bae, Kyung-Mi;Noh, Jung Ho;Shin, Il Sheob;Kim, Se Hee;Kim, Jeong-Hee;Kim, Dae-Hyun;Hwang, Hae-Sung
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • This study was conducted to investigate the genetic diversity and to develop a technique for cultivar identification using SSR markers in grapevine. Thirty Korean bred and introduced grapevine cultivars were evaluated by 28 SSR markers. A total of 143 alleles were produced ranging from 2 to 8 alleles with an average of 5.1 alleles per locus. Polymorphic information contents (PIC) were ranged from 0.666 (VVIp02) to 0.975 (VVIn33 and VVIn62) with an average of 0.882. UPGMA (unweighted pair-group method arithmetic average) clustering analysis based on genetic distances using 143 alleles classified 30 grapevine cultivars into 7 clusters by similarity index of 0.685. Similarity values among the tested grapevine cultivars ranged from 0.575 to 1.00, and the average similarity value was 0.661. The similarity index was the highest (1.00) between 'Jinok' and 'Campbell Early', and the lowest (0.575) between 'Alden' and 'Narsha'. The genetic relationships among the 30 studied grapevine cultivars were basically consistent with the known pedigree. The three SSR markers sets (VVIn61, VVIt60, and VVIu20) selected from 28 primers were differentiated all grapevine cultivars except for 'Jinok' and 'Campbell Early'. Five cultivars ('Narsha, 'Alden', 'Dutchess', 'Pione', and 'Muscat Hamburg') were identified by VVIn61 at the first step. Then 21 cultivars including 'Hongsodam' by VVIt60 at the second step and 2 cultivars ('Heukbosuck' and 'Suok') by VVIu20 at the third step were identified. These markers could be used as a reliable tool for the identification of Korean grapevine cultivars.

An Efficient Identification of 68 Apple Cultivars Using a Cultivar Identification Diagram (CID) Strategy and RAPD Markers

  • Wang, Wenyan;Wang, Kun;Liu, Fengzhi;Fang, Jinggui
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.549-556
    • /
    • 2012
  • The study aimed to establish an efficient tool for cultivar identification and characterization being the first steps of apple introduction and improvement program. We utilized a method to efficiently record DNA molecular fingerprints of plant individuals genotyped by RAPD, which could be used as efficient reference information for quick plant identification. Ten of sixty 11-mer primers were screened to identify the 68 apple genotypes which could be distinguished by a combination of several primers. All cultivars were easily identified by the corresponding primers marked on the cultivar identification diagram (CID). The results indicated that the CID strategy developed and employed in the apple cultivar identification could be vital in the utilization of DNA marker in other plants as well as the development of the apple industry.

Development of SCAR Markers for Korean Wheat Cultivars Identification

  • Son, Jae-Han;Kim, Kyeong-Hoon;Shin, Sanghyun;Choi, Induk;Kim, Hag-Sin;Cheong, Young-Keun;Lee, Choon-Ki;Lee, Sung-Il;Choi, Ji-Yeong;Park, Kwang-Geun;Kang, Chon-Sik
    • Plant Breeding and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.224-230
    • /
    • 2014
  • Amplified fragment length polymorphism (AFLP) is a molecular marker technique based on DNA and is extremely useful in detection of high polymorphism between closely related genotypes like Korean wheat cultivars. Six sequence characterized amplified regions (SCARs) have been developed from inter simple sequence repeat (ISSR) analysis which enabled the identification and differentiation of 13 Korean wheat cultivars from the other cultivars. We used six combinations of primer sets in our AFLP analysis for developing additional cultivar-specific markers in Korean wheat. Fifty-eight of the AFLP bands were isolated from EA-ACG/MA-CAC, EA-AGC/MA-CTG and EA-AGG/MA-CTA primer combinations. Of which 40 bands were selected to design SCAR primer pairs for Korean wheat cultivar identification. Three of 58 amplified primer pairs, KWSM006, KWSM007 and JkSP, enabled wheat cultivar identification. Consequently, 23 of 32 Korean wheat cultivars were classified by eight SCAR marker sets.

Genetically Independent Tetranucleotide to Hexanucleotide Core Motif SSR Markers for Identifying Lentinula edodes Cultivars

  • Saito, Teruaki;Sakuta, Genki;Kobayashi, Hitoshi;Ouchi, Kenji;Inatomi, Satoshi
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.466-472
    • /
    • 2019
  • For the purpose of protecting the rights of Lentinula edodes breeders, we developed a new simple sequence repeat (SSR) marker set consisting only of genetically independent tetranucleotide or longer core motifs. Using available genome sequences for five L. edodes strains, we designed primers for 13 SSR markers that amplified polymorphic sequences in 20 L. edodes cultivars. We evaluated the independence of every possible marker pair based on genotype data. Consequently, eight genetically independent markers were selected. The polymorphic information content values of the markers ranged from 0.269 to 0.764, with an average of 0.409. The markers could distinguish among 20 L. edodes cultivars and produced highly repeatable and reproducible results. The markers developed in this study will enable the precise identification of L. edodes cultivars, and may be useful for protecting breeders' rights.