• 제목/요약/키워드: ice-storage system

Search Result 173, Processing Time 0.022 seconds

An Experimental Study of Dynamic Type Ice Storage System Using Magneticfluid (자성유체를 이용한 다이나믹형 빙축열 시스템에 관한 실험적 연구)

  • Hwang, Seung-Sic
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1484-1493
    • /
    • 2004
  • In this study, it induced to a conclusion below by experiment consideration to regarding an effective supercooling ends method of the flow cooling water in a tube of continuous ice making method and the static cooling water in a tube of continuous ice making method which used magneticfluid in a dynamic type ice storage system. Continuous ice making in a tube of the flow cooling water was shortened about 12 minutes until supercooling ends that case which gave vertical eccentricity rotation magnetic field 120rpm than did not provide magnetic field by experimental result that was tested to supercooling ends effect from shape control of magneticfluid. Continuous ice making method in a tube of the static cooling water compared with and reviewed the case that was not provided with the magnetic field and exposed cooling surface instantaneously by magnetic field. It confirmed that supercooling degree $\Delta$ $T_{c}$, $\Delta$ $T_{s}$, and $\Delta$ $T_{w}$ became lower because of heat transfering increasing by the occurrence of natural convection between after cooling starting progress time 1∼3 minutes if it did not give a magnetic field, and peformed the supercooling ends when natural convection occurred confirmed that refrigerating capacity was better. That relation $\Delta$ $T_{c}$, and $t_{e}$/($\Delta$ $T_{c}$-$\Delta$ $T_{s}$) after convection occurred, was not depended on $T_{b}$ and initial temperature if the depth of water and thickness of magneticfluid were regular and it was possible to verify conjecture of tp from $\Delta$ $T_{s}$ and $\Delta$ $T_{c}$.lar and it was possible to verify conjecture of tp from $\Delta$ $T_{s}$ and $\Delta$ $T_{c}$.c}$.>.

Performance Simulation of One-Dimensional Ice Storage Tank Model for Refrigeration System Using Night Electricity (심야전력이용 냉방시스템용 캡슐형 빙축열조에 대한 1차원 모델 축방냉 성능 시뮬레이션)

  • 이경호;주용진;최병윤
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.193-196
    • /
    • 1999
  • This paper describes one dimensional transient modeling of encapsulated ice storage tank and its experimental validation. This model simulates the performance of tile tank for charge and discharge process with brine mass flow operating conditions.

  • PDF

Variation of Pressure Loss and IPF Flowing Ice Slurry in Straight Tube Inclined to Various Angle (다양한 각도로 기울어진 직관내에서 아이스슬러리 유동시 압력손실과 IPF 변화)

  • Kim Kyu-Mok;Park Ki-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1028-1034
    • /
    • 2004
  • Recently, the ice storage system using ice slurry has been used increasingly since it has been introduced where the rapid cooling load change is required. Because it overcomes a decrease of the melting performance and an increase of the thermal resistance on the ice layer in static ice thermal storage system. This study is performed to understand the effects of transporting ice slurry through horizontal, vertical and inclined tubes ($30^{\circ},\;45^{\circ}$). It used propylene glycol-water solution and ice particles (diameter of about 2 mm) in this experiment. The experiments were carried out under various conditions, with concentration of water solution ranging from 0 to $20wt\%$, and velocity of water solution at the entry ranging from 1.5 to 2.5 m/s. The results were as follows: Regarding the angle of inclined tube, the highest pressure loss was measured for vertical tube and the pressure loss for $45^{\circ},\;30^{\circ}$, horizontal straight tubes were lower successively. The lowest pressure loss in these tubes was measured at velocity of $2.0{\sim}2.5m/s$ and concentration of $10wt\%$. The outlet IPF was likewise stable in these ranges.

Evaluation of Drainage System and Coupled Analysis of Heat Transfer and Water Flow for Ice Ring formation in Daejeon LNG Pilot Cavern (대전 LNG Pilot Cavern에서의 배수시스템 평가 및 Ice Ring 형성에 관한 냉열수리 연동해석)

  • Jeong Woo-Cheol;Lee Hee-Suk;Lee Dae-Hyuck;Kim Ho-Yeong;Choi Young-Tae
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.38-49
    • /
    • 2006
  • LNG storage in lined rock cavern demands various techniques concerned with rock mechanics, thermo-mechanics and hydrogeology in design, construction and maintenance stage. LNG pilot cavern was constructed in Daejeon in order to verify these techniques. In this paper, evaluation of drainage system and ice ring formation was studied by numerical simulation. By Modflow analysis in the viewpoint of aquifer and Seep/W analysis in the viewpoint of flow system, it was verified that the drainage system in the pilot cavern was efficiently operated. Since ice ring formation can be simulated by interactive relation between heat transfer and water flow, coupled analysis of those was performed. In this analysis, the position of ice ring was presumed and it was demonstrated that the formation is affected by velocity and direction of groundwater flow.

Cold Energy Storage System Using Direct Contact Heat Transfer (직접 접촉식을 이용한 빙축열 시스템)

  • Lee, Y.P.;Yoon, S.Y.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.247-258
    • /
    • 1994
  • In this study, experimental investigations to find cold energy storage performance have been made for two different temperatures at condenser. Temperatures at inlet and outlet of condenser were measured to calculate global heat transfer coefficient of direct contact method in our cold energy storage system. Also storage performance by direct contact method was compared with that of Ice-On-Coil type ice storage which was calculated by analytic solution. Results show that, in the case of $-8.0^{\circ}C$ at condenser inlet, heat transfer coefficient of direct contact method is 3.25 times higher than that of conventional method and COP of system is improved by using R141b as refrigerant which produces gas hydrate and has higher phase change temperature than $0.0^{\circ}C$.

  • PDF

Analysis of Thermal and Flow Characteristic in Ice Storage Tank (빙축열조 내부의 열적유동 특성 해석)

  • Kim, Y.I.;Hong, H.K.;Bai, C.H.;Kim, Y.I.;Yoon, H.S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.369-376
    • /
    • 1988
  • Among several methods to solve the unbalanced electric power load, the Ice Storage System (ISS) for the air conditioning is relatively easy to realize and gives big effect on balancing the electric power load. The goals of this study are to develop the practical ISS for the air conditioning through the design, manufacturing and performance test of the experimental ISS (size $0.335m^3$, cold storage capacity 14200 kcal, IPF 0.4). Thermal fluid motion inside the ice storage tank during cooling storage and cooling release are studied. The data are analyzed by the dispersion analysis and optimal design conditions are derived from the result.

  • PDF

Ice Marking Pattern of Flowing Organic Water Solution in a Horizontal Cooled Tube (수평냉각관내에서 유동하는 유기수용액의 제빙형태)

  • 박기원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.52-57
    • /
    • 2000
  • Recently large capacity of electric equipment and increasing in atomic power generation are shown. One of the reason is shortage of the electric power supply for air conditioning load during summer. And every consumer is concerning about economical refrigeration and air conditioning system to decreases electric power consumption and decrease in global warming. For these necessities, ice making thermal storage system is required. Therefore, in this paper, the possibility of continuous slurry ice making using flowing organic water solution in cooled circular tube has been investigated. The experiments was carried out under some parameters of concentration and velocity of water solution, temperature of cooled tube wall, and control pressure in tube, As a result, four types of operating conditions in the pipe, that was supercooling, continuous ice making, intermittent ice making and ice blockage, were classified . And it was found that the critical condition for continuous ice making was acquired as a function of these experimental parameters.

  • PDF

An Evaluation of Chiller Control Strategy in Ice Storage System for Cost-Saving Operation (운전비 절감을 위한 빙축열시스템 냉동기 운전기법 평가)

  • Lee, Kyoung-Ho;Choi, Byoung-Youn;Lee, Sang-Ryoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • This paper presents simulated and experimental test results of optimal control algorithm for an encapsulated ice thermal storage system with full capacity chiller operation. The algorithm finds an optimal combination of a chiller and/or a storage tank operation for the minimum total operation cost through a cycle of charging and discharging. Dynamic programming is used to find the optimal control schedule. The conventional control strategy of chiller-priority is the baseline case for comparing with the optimal control strategy through simulation and experimental test. Simulation shows that operating cost for the optimal control with chiller on-off operation is not so different from that with chiller part load capacity control. As a result from the experimental test, the optimal control operation according to the simulated operation schedule showed about 14 % of cost saving compared with the chiller-priority control.

Evaluation of Ice Adhesion in an Aqueous Solution with Functional Materials by Stirring Power (교반동력에 의한 기능성 물질 함유 수용액의 빙부착 평가)

  • Seung, Hyun;Baek, Jong-Hyun;Hong, Hee-Ki;Kang, Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.720-727
    • /
    • 2004
  • In the process of ice-slurry making, the phenomenon of ice adhesion influences extremely to ice making system. In this study, the effect on the ice adhesion by thermal storage material with additives is investigated quantitatively. Various solutions of 300 g in a stainless vessel were frozen under stirring. Through the experiment the ice adhesion between cooling wall and ice-slurry was compared with each other by measuring the stirring power. From the experiment, the stirring power in EG, SCA solution was smaller than those in the solution containing functional materials, such as poly-vinyl-alcohol or kitchen detergent.