• Title/Summary/Keyword: ice streams

Search Result 6, Processing Time 0.027 seconds

Molecular Characterization of Dissolved Organic Matter Unveils their Complexity, Origin, and Fate in Glacier and Glacial-Fed Streams and Lakes on the Tibetan Plateau

  • Kim, Min Sung;Zhou, Lei;Choi, Mira;Zhang, Yunlin;Zhou, Yongqiang;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.192-199
    • /
    • 2021
  • Alpine glaciers harbor a large quantity of bio-labile dissolved organic matter (DOM), which plays a pivotal role in global carbon cycling as glacial-fed streams are headwaters of numerous large rivers. To understand the complexity, origin, and fate of DOM in glaciers and downstream-linked streams and lakes, we elucidated the molecular composition of DOM in two different Tibetan Plateau glaciers, eight glacial-fed streams and five lakes, using an ultrahigh-resolution 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The compositional changes of the DOM samples revealed that glacier DOM mostly exhibited sulfur-containing organic compounds (CHOS species). We also found that aliphatic formulae contributed more than 50% of the total abundance of assigned molecules in glacier samples, and those compounds were significantly related to CHOS species. The CHO proportions of glacial-fed streams and lakes samples increased with increasing distance from glacial terminals. The relative contribution of terrestrial-derived organics (i.e., lignins and tannins) declined while microbial-originated organics (aliphatics) increased with increasing elevation. This suggested the gradual input of allochthonous materials from non-glacial environment and the degradation of microbe-derived compounds along lower elevations. Alpine glaciers are retreating as a result of climate change and they nourished numerous streams, rivers, and downstream-linked lakes. Therefore, the interpretations of the detailed molecular changes in glacier ice, glacial-fed streams, and alpine lakes on the Tibetan Plateau could provide broad insights for understanding the biogeochemical cycling of glacial DOM and assessing how the nature of DOM impacts fluvial ecosystems.

Investigation for flow characteristics of ice-harbor type fishway installed at mid-sized streams in Korea (국내 중소하천에 설치된 아이스하버 어도 내부 흐름 특성 규명)

  • Baek, Kyong Oh;Min, Byong Jo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In this study, flow patterns in the ice-harbor fishway were analyzed according to fluctuations of the upstream water level, an increase of weir interval, and the presence or absence of orifices using a three-dimensional commercial numerical model, Flow-3D. In order to prove the suitability of the numerical simulation results, the flow velocity and flow rate at the exit of the fishway were observed using a 3D ultrasonic velocimetry on an actual ice-harbor fishway installed downstream of the Daegok bridge in Gyeongan-Cheon. Four types of turbulence modules can be selected for the Flow-3D model. As a result of verification with observation data, the RNG model best described the flow characteristics in the ice-harbor fishway. The velocity structure in the fishway according to fluctuations of the upstream water level was simulated. The results showed that the plunging flow and the streaming flow were mixed at the lowest water level. When the water level increased about 10 cm or more from the lowest water level, the plunging flow disappeared in all pools and only the streaming flow occurred. Contrary to expectations, even when the water level is rose a little, the flow simply occurred mainly on the streaming flow. If the interval between the weirs is increased, both the plunging flow and the streaming flow are showed continued even if the water level rises. In addition, compared to the case where there are no orifices at the bottom of the weirs, the plunging flow tends to be generated in several pools. It is necessary to prevent blocking orifices through active management so that various flow patterns in the fishway can be generated in multiple pools.

Operator-splitting methods respecting eigenvalue problems for shallow shelf equations with basal drag

  • Geiser, Jurgen;Calov, Reinhard
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.325-343
    • /
    • 2012
  • We present different numerical methods for solving the shallow shelf equations with basal drag (SSAB). An alternative approach of splitting the SSAB equation into a Laplacian and diagonal shift operator is discussed with respect to the underlying eigenvalue problem. First, we solve the equations using standard methods. Then, the coupled equations are decomposed into operators for membranes stresses, basal shear stress and driving stress. Applying reasonable parameter values, we demonstrate that the operator of the membrane stresses is much stiffer than the operator of the basal shear stress. Here, we could apply a new splitting method, which alternates between the iteration on the membrane-stress operator and the basal-shear operator, with a more frequent iteration on the operator of the membrane stresses. We show that this splitting accelerates and stabilize the computational performance of the numerical method, although an appropriate choice of the standard method used to solve for all operators in one step speeds up the scheme as well.

Efficiency Analysis of the Ice Harbor Type Fishway Installed at the Gongju Weir on the Geum River using Traps (Trap을 이용한 공주보 아이스하버식 어도의 효과분석)

  • Lee, Jin-Woong;Yoon, Ju-Duk;Kim, Jeong-Hui;Park, Sang-Hyeon;Baek, Seung-Ho;Yoon, Jo-Hee;Jang, Min-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.75-82
    • /
    • 2015
  • To overcome the stream fragmentation and blockage of migration of fishes by dams and weirs, fishways are commonly installed. However, limited studies were conducted for effectiveness and suitability of fishways installed in Korean streams. In this study, we investigated fish usages (by time periods, locations and months) of the Ice Harbor type fishway installed in the Gongju weir using traps. The monitoring were monthly conducted from June to October, 2012. The number of individuals which used fishway in September and October decreased than in June to August. Although no statistical significance was identified, many numbers of species and individuals were occurred at the trap installed at the left end of fishway than others. Fishes of more diverse size classes occurred at this trap as well. The number of collected individuals and water level of weir were positively correlated though they showed low correlation coefficient. Conversely, occurrence rate of fishes smaller than 70 mm of total length decreased with increasing water level of weir. fishway usage time of fish were different depends on ecological characteristics of each species. Various sizes of fishes can use fishway for their upstream migration. These results are useful for establishing management and evaluation plans of Ice Harbor type fishway in S. Korea.

International and domestic research trends in longitudinal connectivity evaluations of aquatic ecosystems, and the applicability analysis of fish-based models (수생태계 종적 연결성 평가를 위한 국내외 연구 현황 및 어류기반 종적 연속성 평가모델 적용성 분석)

  • Kim, Ji Yoon;Kim, Jai-Gu;Bae, Dae-Yeul;Kim, Hye-Jin;Kim, Jeong-Eun;Lee, Ho-Seong;Lim, Jun-Young;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.634-649
    • /
    • 2020
  • Recently, stream longitudinal connectivity has been a topic of investigation due to the frequent disconnections and the impact of aquatic ecosystems caused by the construction of small and medium-sized weirs and various artificial structures (fishways) directly influencing the stream ecosystem health. In this study, the international and domestic research trends of the longitudinal connectivity in aquatic ecosystems were evaluated and the applicability of fish-based longitudinal connectivity models used in developed countries was analyzed. For these purposes, we analyzed the current status of research on longitudinal connectivity and structural problems, fish monitoring methodology, monitoring approaches, longitudinal disconnectivity of fish movement, and biodiversity. In addition, we analyzed the current status and some technical limitations of physical habitat suitability evaluation, ecology-based water flow, eco-hydrological modeling for fish habitat connectivity, and the s/w program development for agent-based model. Numerous references, data, and various reports were examined to identify worldwide longitudinal stream connectivity evaluation models in European and non-European countries. The international approaches to longitudinal connectivity evaluations were categorized into five phases including 1) an approach integrating fish community and artificial structure surveys (two types input variables), 2) field monitoring approaches, 3) a stream geomorphological approach, 4) an artificial structure-based DB analytical approach, and 5) other approaches. the overall evaluation of survey methodologies and applicability for longitudinal stream connectivity suggested that the ICE model (Information sur la Continuite Ecologique) and the ICF model (Index de Connectivitat Fluvial), widely used in European countries, were appropriate for the application of longitudinal connectivity evaluations in Korean streams.

Water Column Properties and Dispersal Pattern of Suspended Particulate Matter (SPM) of Marian Cove during Austral Summer, King George Island, West Antarctica (남극 킹죠지섬 마리안 소반의 하계 수층 특성과 부유물질 분산)

  • Yoo, Kyu-Cheul;Yoon, Ho-Il;Oh, Jae-Kyung;Kim, Yea-Dong;Kang, Cheon-Yun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.266-274
    • /
    • 1999
  • Vertical CTDT measurement at one point near tidewater glacier of fjord-head in Marian Cove, a tributary embayment of Maxwell Bay, South Shetland Islands was performed for 24 hours during the austral summer (January 21-22, 1998) to present water-column properties and SPM (suspended particulate matter) dispersal pattern in subpolar glaciomarine setting. Marian Cove shows three distinct water layers: 1) cold, freshened, and highly turbid surface plume in the upper 2 m, 2) warm, saline, and relatively clean Maxwell Bay water between 15-35 m in water depth, and 3) cold and turbid mid plume between 40-65 m in water depth. The surface plume is composed of silt-sized clastie particles mixed with flocculated biogenic detritus, and appears to originate from either supraglacial discharge by meltwater streams along the coast or water fall of ice cliff. Freshened and turbid mid plume consists exclusively of silt-sized clastic particles, resulting from subglacial discharge beneath the tidewater glacier. The disappearance of the two turbid plumes during the earlier period of measurement seems to be largely due to the breakup of the plumes by upwelling caused by strong easterly wind (> 8 m $sec^{-1}$). Thus, wind coupling over tidal effects regionally plays a major role in dispersal pattern of SPM as well as water exchange in Marian Cove.

  • PDF