• Title/Summary/Keyword: ice

Search Result 2,499, Processing Time 0.029 seconds

Ice Slurry Formation of a Solution in a Pressurized Plate Heat Exchanger (가압 판형 열교환기에 의한 수용액의 아이스슬러리 생성)

  • Lee Dong-Gyu;Kim Byung-Seon;Peck Jong-Hyeon;Hong Hi-Ki;Kang Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.596-602
    • /
    • 2006
  • Ice adhesion and blockage problems have been issued in continuous ice slurry making process. So we composed continuous ice slurry making device using a commercial small plate heat exchanger (PHX), and investigated character of ice formation. An experiment of ice formation was peformed with an aqueous solution of ethylene glycol 7 mass%. In the experiment, the effect of the pressurization on ice slurry formation during the cooling process was investigated. The pressurization test for the aqueous solution was performed by setting valves at the PHX inlet and outlet. At the results, the time of continuous ice formation increased as the pressure of the plate heat exchanger increased for cooling temperature of $-5^{\circ}C$. Also continuous ice formation at the cooling temperature of $-7^{\circ}C$ showed a possibility. It was found that the pressurization may contribute to suppress the dissolution of supercooled aqueous solution in the PHX.

Calculation of Fatigue Life of Bow Frame of ARAON Considering Navigating in Ice and Open Waters (빙 및 일반해역 운항을 고려한 아라온호 선수프레임의 피로수명 계산)

  • An, Woo-Seong;Lee, Tak-Kee;Hwang, Mi-Ran
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.458-465
    • /
    • 2018
  • Ice-going ships such as icebreakers, icebreaking tankers, and icebreaking LNG carriers are subjected to wave loads in open water and ice loads in ice-covered water. In terms of the ship's structural design, the local ice load is important. The fatigue failure due to repeated ice loads is also important. ISO 19906 specifies the assessment of the fatigue limit for a polar offshore structures. In addition, Lloyd's Register refers to fatigue damage based on ShipRight FDA ICE. In ShipRight FDA ICE, the fatigue damage indices due to wave and ice loads are simply presented as 0.5 for each load. It also states that the sum of the two fatigue damage indices should not exceed one. This study calculated and analyzed the fatigue damage index and fatigue life considering ARAON's voyage schedules and the assumed Antarctic voyage based on data measured during the Arctic voyage of ARAON in 2010.

Numerical simulation of propeller exciting force induced by milling-shape ice

  • Wang, C.;Li, X.;Chang, X.;Xiong, W.P.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.294-306
    • /
    • 2019
  • On the basis of the Computational Fluid Dynamics technique (CFD) combined with the overlap grid method, this paper establishes a numerical simulation method to study the problem of ice-propeller interaction in viscous flow and carries out a simulation forecast of the hydrodynamic performance of an ice-class propeller and flow characteristics when in the proximity of milling-shape ice (i.e., an ice block with a groove cut by a high-speed revolving propeller). We use a trimmed mesh in the entire calculation domain and use the overlap grid method to transfer information between the domains of propeller rotation calculation and ice-surface computing. The grid is refined in the narrow gap between the ice and propeller to ensure the accuracy of the flow field. Comparison with the results of the experiment reveals that the error of the hydrodynamic performance is within 5%. This confirms the feasibility of the calculation method. In this paper, we calculate the exciting force of the propeller, analyze the time domain of the exciting force, and obtain the curve of the frequency domain using a Fourier transform of the time-domain curve of the exciting force. The existence of milling-shape ice before the propeller can greatly disturb the wake flow field. Unlike in open water, the propeller bearing capacity shows a downward trend in three stages, and fluctuating pressure is more disordered near the ice.

Study on the Semi-Analytical Ice Load Calculation Methods for the Ice-Breaking Simulation (쇄빙시뮬레이션을 위한 반해석적 빙하중 계산법 고찰)

  • Kim, Jeong-Hwan;Jang, Beom-Seon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.353-364
    • /
    • 2020
  • This paper presents the semi-analytical ice load calculation methods that are useful to simulate the ice-breaking process. Since the semi-analytical methods rely on the previously developed closed form equations or numerical analysis results, the user's exact understanding for the equations must be supported in order to use the methods properly. In this study, various failure modes of ice such as local crushing, in-plane splitting failure, out-of-plane bending failure and radial or circumferential cracking with rotation of the broken ice floe are considered. Based on the presented methods, the fracture modes were evaluated according to the size and thickness of ice. In addition, time series analysis for the ice-breaking process was performed on several ice conditions and the results were analyzed.

Flow Velocity Change of David Glacier, East Antarctica, from 2016 to 2020 Observed by Sentinel-1A SAR Offset Tracking Method

  • Moon, Jihyun;Cho, Yuri;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • This study measures the change of ice flow velocity of David Glacier, one of the fast-moving glaciers in East Antarctica that drains through Drygalski Ice Tongue. In order to effectively observe the rapid flow velocity, we applied the offset tracking technique to Sentinel-1A SAR images obtained from 2016 to 2020 with 36-day temporal baseline. The resulting velocity maps were averaged and the two relatively fast points (A1 and A2) were selected for further time-series analysis. The flow velocity increased during the Antarctic summer (around December to March) over the four years' observation period probably due to the ice surface melting and reduced friction on the ice bottom. Bedmap2 showed that the fast flow velocities at A1 and A2 are associated with a sharp decrease in the ice surface and bottom elevation so that ice volumetric cross-section narrows down and the crevasses are being created on the ice surface. The local maxima in standard deviation of ice velocity, S1 and S2, showed random temporal fluctuation due to the rotational ice swirls causing error in offset tracking method. It is suggested that more robust offset tracking method is necessary to incorporate rotational motion.

Study on sloshing simulation in the independent tank for an ice-breaking LNG carrier

  • Ding, Shifeng;Wang, Gang;Luo, Qiuming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.667-679
    • /
    • 2020
  • As the LNG carrier operates in ice covered waters, it is key to ensure the overall safety, which is related to the coupling effect of ice-breaking process and internal liquid sloshing. This paper focuses on the sloshing simulation of the ice-breaking LNG carrier, and the numerical method is proposed using Circumferential Crack Method (CCM) and Volume of Vluid (VOF) with two main key factors (velocity νx and force Fx). The ship motion analysis is carried out by CCM when the ship navigates in the ice-covered waters with a constant propulsion power. The velocity νx is gained, which is the initial excitation condition for the calculation of internal sloshing force Fx. Then, the ship motion is modified based on iterative computations under the union action of ice-breaking force and liquid sloshing load. The sloshing simulation under the LNG tank is studied with the modified ship motion. Moreover, an ice-breaking LNG ship with three-leaf type tank is used for case study. The internal LNG sloshing is simulated with three different liquid heights, including free surface shape and sloshing pressure distribution at a given moment, pressure curves at monitoring points on the bulkhead. This present method is effective to solve the sloshing simulation during ice-breaking process, which could be a good reference for the design of the polar ice-breaking LNG carrier.

Polarimetric Scattering of Sea Ice and Snow Using L-band Quad-polarized PALSAR Data in Kongsfjorden, Svalbard (북극 스발바드 콩스피오르덴 해역에서 L 밴드 PALSAR 데이터를 이용한 눈과 부빙에 의한 다중편파 산란특성 해석)

  • Jung, Jung-Soo;Yang, Chan-Su;Ouchi, Kazuo;Nakamura, Kuzaki
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • This study describes measurements of fast ice recorded on May 23, 2009, in Kongsfjorden (translated as 'Kongs Fjord'), an inlet on the west coast of Spitsbergen in the Svalbard Archipelago. Seasonal fast ice is an important feature for Svalbard fjords, both in relation to their physical environment and also the local ecosystem, since it grows seaward from the coast and remains in place throughout the winter. Ice thickness, snow, ice properties, and wind speed were measured, while SAR (Synthetic Aperture Radar) data was observed simultaneously observed two times from ALOS-PALSAR (L-band). Measured ice thickness was about 25-35 cm while the thickness of ice floe broken from fast ice was measured as 10-15 cm. Average salinity was 1.9-2.0 ppt during the melting period. Polarimetric data was used to extract H/A/alpha-angle parameters of fast ice, ice floe, snow and glacier, which was classified into 18 classes based on these parameters. It was established that the area of fast ice represents surface scattering which indicates low and medium entropy surface scatters such as Bragg and random surfaces, while fast ice covered with snow belongs to a zone of low entropy surface scattering similar to snow-covered land surfaces. The results of this study will contribute to various interpretations of interrelationships between H/A/alpha parameters and the wave scattering Phenomenon of sea ice.

On the Occurrence Mechanism of the Ice Spike (솟는 고드름의 형성 원리)

  • Byun, Hi-Ryong;Yoon, Ma-Byong;Shim, Jae-Myun;Kim, Gabyn;Kwon, Sang-Hoon;Kwon, Hui-nae;Kim, Jin-Ah
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.73-84
    • /
    • 2016
  • A method to make ice spike using home refrigerator with ice tray was found. Many experiments have carried out with this method and many natural phenomena occurring on the formation of ice spike are found. A new concept of the Latter Freezing Water (LFW) was imported to explain the ice spike formation. At LFW position on water surface, the Sprout of Super cooled Water (SSW) grows by the Volume Expansion Effect (VEE) caused by the phase change of water in water. And air bubbles that are expelled from ice during freezing process, gather, rise, and detonate at the upper most part of SSW that make SSW freeze and grow upward with the water pipe in it. Together with VEE the capillarity in the water pipe makes the column grow more, that makes the ice spike. Many other findings were succeeded; 1) Ice spike process is completed before the whole water freezes. 2) If water is corrupted or shocked, even though it is very slight, ice spike is not generated. 3) Rain water contains the most LFW among all kind of waters used in experiments. 4) LFW is changed into normal water after passing the ice spike. 5) A new concept of the ice bullet is introduced. 6) The reason of frequent occurrences of the ice spike at Mt. Mai is investigated also.

Comparison Study on the Resistance Characteristics of an Arctic Tanker and a General Tanker (쇄빙 유조선과 일반 유조선의 저항특성 비교연구)

  • Kim, Hyun-Soo;Ha, Mun-Keun;Ahn, Dang;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.43-49
    • /
    • 2006
  • The hull form of icebreaking tanker depends on the trade route and ice characteristic. The hull form has to be designed for icebreaking concept if the vessel is operating in heavy ice and also the hull from has to be optimized for general tanker when the ship is operating in ice-free ocean. This paper presents comparison of ship resistance in pack ice, level ice and open water. Four ships are used to compare the resistance characteristic. One is conventional tanker and three ships are icebreaking tankers. The ice model test was carried out at the IOT (Institute for Ocean Technology, Newfoundland, Canada) and open water test was performed at 55MB (Samsung Ship Model Basin). The ice resistance of conventional tanker was predicted by Colbourne's method. The resistance of open water, pack ice and level ice are compared and discussed. The best hull form of icebreaker is not good in open water performance compare to conventional tanker. This result explains that the hull form of icebreaker and normal tanker have to compromise when the ship is operated in ice and ice-free condition. The result of this paper gives a guide for icebreaking tanker design.

Contents and Fatty Acid Compositions in Fats Extracted from Ice Creams and Ice Cream-Related Products (아이스크림 제품류에 함유되어 있는 지방함량 및 지방산조성)

  • Shin, Min-Kyung;Oh, Hyun-Hee;Hwang, Keum-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.721-728
    • /
    • 2006
  • The objective of the study was to analyze the contents and fatty acid compositions in the extracted fats from selected commercial ice creams and ice cream-related products. Seventy four ice creams and ice cream-related products were collected from local stores: 22 regular 'ice creams', 10 premium 'ice creams', 22 'ice milks', 4 'sherbets', 11 'non-milk-fat ice creams' and 5 'non-milk product ice creams'. Contents and fatty acid compositions of the fats in the ice creams and ice cream-related products were analyzed. Fat contents in regular 'ice creams', premium 'ice creams' and 'ice milks' were $5{\sim}11%,\;13{\sim}17%\;and\;2{\sim}10%$, respectively. 'Sherbets', 'non-milk-fat ice creams' and 'non-milk product ice creams' contained $2{\sim}7%,\;4{\sim}11%\;and\;1{\sim}2%$ fats, respectively. Fats extracted from 14 regular 'ice creams', all of the premium 'ice creams' and 11 'ice milks' contained $63{\sim}75%$ saturated fatty acids and $2{\sim}5%$ trans fatty acids. Their fatty acid compositions were similar to those in milks and butter. However, fats from 8 regular 'ice creams' and 11 'ice milks' contained $11{\sim}28%\;and\;11{\sim}34%$ lauric acid, respectively. Since these levels of lauric acid were 3 times more than in milk or butter, other fats along with milk fat might be used for manufacturing these' ice creams' and 'ice milks'. Out of these 19 products, only 5 products were labelled as 'coconut oil' or 'refined oil' as well as milk fat being used. Fats extracted from 'sherbets', 'non-milk-fat ice creams' and 'non-milk product ice creams' contained $81{\sim}92%,\;76{\sim}99%\;and\;84{\sim}99%$ saturated fatty acids, respectively. Lauric acid was the most abundant fatty acid in the fats of these products, being $33{\sim}34%,\;17{\sim}45%\;and\;27{\sim}46%$ of the total fatty acids, respectively.