• Title/Summary/Keyword: iFLASH

Search Result 227, Processing Time 0.024 seconds

The Design and Implementation of Internet Broadcasting Move Picture Solution apply to FlashVideo (FlashVideo를 적용한 인터넷 방송 동영상 솔루션의 설계 및 구현)

  • Kwon, O-Byung;Kim, Kyeong-Su
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.241-246
    • /
    • 2012
  • In this paper, we apply the next generation Internet Broadcasting Move Picture solution, FlashVideo has been designed and implemented. Currently being broadcast in the field to compress HD video in real time, as well as live Internet VOD services are available through the online system, the Internet LIVE broadcast and VOD service easy to operate and UCC services that support the solution. VOD video cameras and in real time using H264 CORECODEC to compress MPEC4, WMV, and real-time video streaming on the Internet, and phone system that supports the first, real-time recording of camera images featured nation's first real-time encoder system (Real time encoder system) is, Web and smart environment suitable for supporting the latest CORECODEC technology and software products. Second, the video can be played in MP4 player and customize your chat, and customizing is a possible two-way Internet Broadcasting System. Third, CMS (Contents Management System) feature video contents and course management contents in real time via the Android phone and iPhone streaming service is available.

Implementation of a Prefetch method for Secondary Index Scan in MySQL InnoDB Engine (MySQL InnoDB엔진의 Secondary Index Scan을 위한 Prefetch 기능 구현)

  • Hwang, Dasom;Lee, Sang-Won
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.208-212
    • /
    • 2017
  • Flash SSDs have many advantages over the existing hard disks such as energy efficiency, shock resistance, and high I/O throughput. For these reasons, in combination with the emergence of innovative technologies such as 3D-NAND and V-NAND for cheaper cost-per-byte, flash SSDs have been rapidly replacing hard disks in many areas. However, the existing database engines, which have been developed mainly assuming hard disks as the storage, could not fully exploit the characteristics of flash SSDs (e.g. internal parallelism). In this paper, in order to utilize the internal parallelism intrinsic to modern flash SSDs for faster query processing, we implemented a prefetching method using asynchronous input/output as a new functionality for secondary index scans in MySQL InnoDB engine. Compared to the original InnoDB engine, the proposed prefetching-based scan scheme shows three-fold higher performance in the case of 16KB-page sizes, and about 4.2-fold higher performance in the case of 4KB-page sizes.

An Efficient Buffer Cache Management Scheme for Heterogeneous Storage Environments (이기종 저장 장치 환경을 위한 버퍼 캐시 관리 기법)

  • Lee, Se-Hwan;Koh, Kern;Bahn, Hyo-Kyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.285-291
    • /
    • 2010
  • Flash memory has many good features such as small size, shock-resistance, and low power consumption, but the cost of flash memory is still high to substitute for hard disk entirely. Recently, some mobile devices, such as laptops, attempt to use both flash memory and hard disk together for taking advantages of merits of them. However, existing OSs (Operating Systems) are not optimized to use the heterogeneous storage media. This paper presents a new buffer cache management scheme. First, we allocate buffer cache space according to access patterns of block references and the characteristics of storage media. Second, we prefetch data blocks selectively according to the location of them and access patterns of them. Third, we moves destaged data from buffer cache to hard disk or flash memory considering the access patterns of block references. Trace-driven simulation shows that the proposed schemes enhance the buffer cache hit ratio by up to 29.9% and reduce the total I/O elapsed time by up to 49.5%.

A New Flash Memory Package Structure with Intelligent Buffer System and Performance Evaluation (버퍼 시스템을 내장한 새로운 플래쉬 메모리 패키지 구조 및 성능 평가)

  • Lee Jung-Hoon;Kim Shin-Dug
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.2
    • /
    • pp.75-84
    • /
    • 2005
  • This research is to design a high performance NAND-type flash memory package with a smart buffer cache that enhances the exploitation of spatial and temporal locality. The proposed buffer structure in a NAND flash memory package, called as a smart buffer cache, consists of three parts, i.e., a fully-associative victim buffer with a small block size, a fully-associative spatial buffer with a large block size, and a dynamic fetching unit. This new NAND-type flash memory package can achieve dramatically high performance and low power consumption comparing with any conventional NAND-type flash memory. Our results show that the NAND flash memory package with a smart buffer cache can reduce the miss ratio by around 70% and the average memory access time by around 67%, over the conventional NAND flash memory configuration. Also, the average miss ratio and average memory access time of the package module with smart buffer for a given buffer space (e.g., 3KB) can achieve better performance than package modules with a conventional direct-mapped buffer with eight times(e.g., 32KB) as much space and a fully-associative configuration with twice as much space(e.g., 8KB)

Flash memory system with spatial smart buffer for the substitution of a hard-disk (하드디스크 대용을 위한 공간적 스마트 버퍼 플래시 메모리 시스템)

  • Jung, Bo-Sung;Jung, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.41-49
    • /
    • 2009
  • Flash memory has become increasingly requestion for the importance and the demand as a storage due to its low power consumption, cheap prices and large capacity medium. This research is to design a high performance flash memory structure for the substitution of a hard-disk by dynamic prefetching of aggressive spatial locality from the spatial smart buffer system. The proposed buffer system in a NAND flash memory consists of three parts, i.e., a fully associative victim buffer for temporal locality, a fully associative spatial buffer for spatial locality, and a dynamic fetching unit. We proposed new dynamic prefetching algorithm for aggressive spatial locality. That is to use the flash memory instead of the hard disk, the proposed flash system can achieve better performance gain by overcoming many drawbacks of the flash memory by the new structure and the new algorithm. According to the simulation results, compared with the smart buffer system, the average miss ratio is reduced about 26% for Mediabench applications. The average memory access times are improved about 35% for Mediabench applications, over 30% for Spec2000 applications.

Data De-duplication and Recycling Technique in SSD-based Storage System for Increasing De-duplication Rate and I/O Performance (SSD 기반 스토리지 시스템에서 중복률과 입출력 성능 향상을 위한 데이터 중복제거 및 재활용 기법)

  • Kim, Ju-Kyeong;Lee, Seung-Kyu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.149-155
    • /
    • 2012
  • SSD is a storage device of having high-performance controller and cache buffer and consists of many NAND flash memories. Because NAND flash memory does not support in-place update, valid pages are invalidated when update and erase operations are issued in file system and then invalid pages are completely deleted via garbage collection. However, garbage collection performs many erase operations of long latency and then it reduces I/O performance and increases wear leveling in SSD. In this paper, we propose a new method of de-duplicating valid data and recycling invalid data. The method de-duplicates valid data and then recycles invalid data so that it improves de-duplication ratio. Due to reducing number of writes and garbage collection, the method could increase I/O performance and decrease wear leveling in SSD. Experimental result shows that it can reduce maximum 20% number of garbage collections and 9% I/O latency than those of general case.

qtar: Design and Implementation of an Optimized tar Command with FTL-level Remapping (qtar: 플래시 변환 계층 리매핑 기법을 이용한 최적화된 tar 명령어 구현)

  • Ryoo, Jeongseok;Hahn, Sangwook Shane;Kim, Jihong
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • Tar is a Linux command that combines several files into a single file. Combining multiple small files into large files increases the compression efficiency and data transfer speed. However, tar has a problem in that smaller target files, result in a lower performance. In this paper, we show that this performance degradation occurs when tar reads the data from the target files and propose qtar (quick tar) to solve this problem via flash-level remapping. When the size of an I/O request is less than 1 MB, the I/O performance decreases proportionally to the decrease in size of the I/O request. Since tar reads the data of files one by one, a smaller file size results in a lower performance. Therefore, the remapping technique is implemented in qtar to read data from the target files at the maximum I/O size regardless of the size of each file. Our evaluations show that the execution time with qtar is reduced by up to 3.4 times compared to that with tar.

A Prefetching and Memory Management Policy for Personal Solid State Drives (개인용 SSD를 위한 선반입 및 메모리 관리 정책)

  • Baek, Sung-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.19A no.1
    • /
    • pp.35-44
    • /
    • 2012
  • Traditional technologies that are used to improve the performance of hard disk drives show many negative cases if they are applied to solid state drives (SSD). Access time and block sequence in hard disk drives that consist of mechanical components are very important performance factors. Meanwhile, SSD provides superior random read performance that is not affected by block address sequence due to the characteristics of flash memory. Practically, it is recommended to disable prefetching if a SSD is installed in a personal computer. However, this paper presents a combinational method of a prefetching scheme and a memory management that consider the internal structure of SSD and the characteristics of NAND flash memory. It is important that SSD must concurrently operate multiple flash memory chips. The I/O unit size of NAND flash memory tends to increase and it exceeded the block size of operating systems. Hence, the proposed prefetching scheme performs in an operating unit of SSD. To complement a weak point of the prefetching scheme, the proposed memory management scheme adaptively evicts uselessly prefetched data to maximize the sum of cache hit rate and prefetch hit rate. We implemented the proposed schemes as a Linux kernel module and evaluated them using a commercial SSD. The schemes improved the I/O performance up to 26% in a given experiment.

Design and Implementation of Analysis Techniques for Fragmented Pages in the Flash Memory Image of Smartphones (스마트폰 플래시 메모리 이미지 내의 단편화된 페이지 분석 기법 및 구현)

  • Park, Jung-Heum;Chung, Hyun-Ji;Lee, Sang-Jin;Son, Young-Dong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.827-839
    • /
    • 2012
  • A cell phone is very close to the user and therefore should be considered in digital forensic investigation. Recently, the proportion of smartphone owners is increasing dramatically. Unlike the feature phone, users can utilize various mobile application in smartphone because it has high-performance operating system (e.g., Android, iOS). As acquisition and analysis of user data in smartphone are more important in digital forensic purposes, smartphone forensics has been studied actively. There are two way to do smartphone forensics. The first way is to extract user's data using the backup and debugging function of smartphones. The second way is to get root permission, and acquire the image of flash memory. And then, it is possible to reconstruct the filesystem, such as YAFFS, EXT, RFS, HFS+ and analyze it. However, this methods are not suitable to recovery and analyze deleted data from smartphones. This paper introduces analysis techniques for fragmented flash memory pages in smartphones. Especially, this paper demonstrates analysis techniques on the image that reconstruction of filesystem is impossible because the spare area of flash memory pages does not exist and the pages in unallocated area of filesystem.

Pillar Type Silicon-Oxide-Nitride-Oxide-Silicon Flash Memory Cells with Modulated Tunneling Oxide

  • Lee, Sang-Youl;Yang, Seung-Dong;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Kim, Seong-Hyeon;Lee, Hi-Deok;Lee, Ga-Won;Oh, Jae-Sub
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.250-253
    • /
    • 2013
  • In this paper, we fabricated 3D pillar type silicon-oxide-nitride-oxide-silicon (SONOS) devices for high density flash applications. To solve the limitation between erase speed and data retention of the conventional SONOS devices, bandgap-engineered (BE) tunneling oxide of oxide-nitride-oxide configuration is integrated with the 3D structure. In addition, the tunneling oxide is modulated by another method of $N_2$ ion implantation ($N_2$ I/I). The measured data shows that the BE-SONOS device has better electrical characteristics, such as a lower threshold voltage ($V_{\tau}$) of 0.13 V, and a higher $g_{m.max}$ of 18.6 ${\mu}A/V$ and mobility of 27.02 $cm^2/Vs$ than the conventional and $N_2$ I/I SONOS devices. Memory characteristics show that the modulated tunneling oxide devices have fast erase speed. Among the devices, the BE-SONOS device has faster program/erase (P/E) speed, and more stable endurance characteristics, than conventional and $N_2$ I/I devices. From the flicker noise analysis, however, the BE-SONOS device seems to have more interface traps between the tunneling oxide and silicon substrate, which should be considered in designing the process conditions. Finally, 3D structures, such as the pillar type BE-SONOS device, are more suitable for next generation memory devices than other modulated tunneling oxide devices.