• Title/Summary/Keyword: iEMG

Search Result 106, Processing Time 0.029 seconds

Effect of Functional Pressure Garments on EMG Response of the Agonist during the Resistance Exercise of the Wrist and Elbow Joint

  • Kim, Ki Hong;Kim, Byung Kwan;Jeong, Hwan Jong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.81-89
    • /
    • 2020
  • The purpose of this study is to investigation the effects of functional compression clothing on muscle function by comparing the iEMG response of muscle during exercise according to the wearing of taping applied functional clothing. Six men in their twenties in Chungcheongnam-do were selected for the study. Resistance exercise was performed by cross-distributing the conditions of wearing and not wearing functional clothing. Resistance exercises for iEMG measurements are biceps curl, wrist curl, reverse wrist curl, kickback and push-up. iEMG measurement muscles were the biceps brachii, triceps brachii, extensor carpi ulnaris, flexor carpi radialis. During biceps curl exercise, the iEMG of triceps brachii, biceps brachii wearing condition was lower than the non-wearing condition. During kickback exercise, the iEMG of triceps brachii, extensor carpi ulnaris wearing condition was lower than the non-wearing condition. During reverse wrist curl exercise, the iEMG of extensor carpi ulnaris wearing condition was lower than the non-wearing condition. During wrist curl exercise, the iEMG of flexsor biceps brachii, carpi radialis wearing condition was lower than the non-wearing condition. During push-up exercise, the iEMG of triceps flexsor biceps brachii, carpi radialis, brachii, biceps brachii non-wearing condition was lower than the wearing condition.

The Impact of Water Depth and Speed on Lower Muscles Activation During Exercise in Different Aquatic Environments

  • Gyu-sun, Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.169-178
    • /
    • 2024
  • This study aimed to investigate the effects of water depth and speed on the activation of lower muscles during squat exercises, utilizing electromyography(EMG). It involved ten male participants in there. Participants performed 30 squats over a minute at a speed of 60bpm and maximum speed squats until exhaustion within a minute. The Integrated electromyography(iEMG) readings for the rectus femoris showed statistically significant differences due to water depth and speed, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the biceps femoris also showed statistically significant differences, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the gastrocnemius showed statistically significant differences according to water depth and speed. However, the interaction effect of water depth and speed during squat exercises did not show a statistically significant difference. In contrast, the iEMG readings for the tibialis anterior demonstrated statistically significant differences, with a statistically significant interaction effect during squats. These findings suggest that water depth and speed positively influence the activation patterns of lower muscles. Therefore, appropriately tailored aquatic exercises based on water depth for individuals with musculoskeletal discomfort, including the elderly or those with physical impairments, can effectively reduce physical strain and enhance balance, as well as physical and perceptual aspects. It is concluded that such exercises could provide a safer and more effective method of exercise compared to ground-based alternatives.

Analysis of Lower Extremity Muscle Activities in Parkinson's Patients for Improving to Stop Task (파킨슨 환자의 멈춤 보행 시 하지 근전도 분석)

  • Yang, Chang-Soo;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.333-339
    • /
    • 2012
  • Freezing of gait is a severely problem in people with Parkinson's disease. The purpose of this study was to investigate the muscle activities of adductor longus, gluteus medius, gluteus maximus, biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior using Noraxon 8 channels EMG system during stop task in patients with Parkinson's disease. Seven parkinson's patients and age matched normal participants were recruited in the study. Filtered EMG signals were rectified, smoothed and integrated. To control for the altered timing and magnitude of activity, iEMG was normalized for time and peak value. The results indicated that the patients with Parkinson showed decreased gait cycle, stance phase, swing phase time, swing phase time ratio and increased stance phase time ratio than normal participants. The patients with Parkinson showed decreased gastrocnemius muscle activity time ratio, while increased tibialis anterior muscle activity time ratio than normal participants. During stance phase before stop, the patients with Parkinson showed relatively lower average and peak iEMG in anterior tibialis and gastrocnemius muscle than normal participants. During swing phase before stop, the patients with Parkinson showed relatively higher average iEMG in gastrocnemius muscle than normal participants. During stop phase, the patients with Parkinson showed relatively lower average and peak iEMG in anterior tibialis and gastrocnemius muscle than normal participants.

Effects of EMG-Biofeedback based Closed Kinetic Chain Exercise on Quadriceps Muscle Activity and Dynamic Balance in Patellofemoral Pain Syndrome (근전도 생체되먹임 기반 닫힌사슬운동이 무릎넙다리통증증후군의 넙다리네갈래근 근활성도와 동적 균형에 미치는 영향)

  • Kang, Joo-hyun;Kim, Je-ho
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.89-98
    • /
    • 2021
  • Purpose: The purpose of this study was to determine the effects of electromyography (EMG)-biofeedback based closed kinetic chain exercise (CKCE) on quadriceps muscle activity and dynamic balance ability in patellofemoral pain syndrome (PFPS). Methods: Thirty subjects with PFPS were included and they were divided into EMG-biofeedback using CKCE (Group I) and squat exercise using CKCE (Group II), each group consisted of 15 patients. Group I and Group II was performed by the patients for three times a week, for six weeks. sEMG was used to measure quadriceps muscle activity and star excursion balance test (SEBT) was used to measure dynamic balance ability. Results: According to the results of the comparisons between the groups, after intervention, quadriceps muscle activity and dynamic balance ability were significantly higher in Group I than in the Group II. Conclusion: Findings of this study suggest that EMG-biofeedback using CKCE that provides real-time biofeedback information on muscle contraction may have a beneficial effect on selective muscle strength of vastus medialis oblique muscle and dynamic balance ability in PFPS.

The Effects on EMG Level by EMG Biofeedback with Progressive Muscle Relaxation Training on Tension Headache (점진적 근육이완 훈련을 병용한 EMG바이오 피드백이 긴장성 두통 환자의 EMG 수준 감소에 미치는 효과)

  • 노유자;김남초;김희승
    • Journal of Korean Academy of Nursing
    • /
    • v.20 no.2
    • /
    • pp.195-213
    • /
    • 1990
  • The purpose of this study is to assess if EMG biofeedback training with progressive muscle relaxation training is effective in reducing the EMG level in patients with tension headaches. This study which lasted from 23 October to 30 December 1989, was conducted on 10 females who were diagnosed as patients with tension headaches and selected from among volunteers at C. University in Seoul. The process of the study was as follows : First, before the treatment the baseline was measured for two weeks and the level of EMG was measured five times in five minutes. And then EMG biofeedback training was used to six weeks, 12 sessions in at and progressive muscle relaxation was done at home by audio tape over eight weeks. Each session was composed of a 5-minute baseline, two 5-minute EMG biofeedback training periods and a 5-minute self-control stage. Each stage was followed by a five minute rest period. So each session took a total of 40 minutes. The EMG level was measured by EMG biofeedback (Autogenic-Cyborg : M 130 EMG module). The results were as follows : 1. The average age of the subjects was 44.1 years and the average history of headache was 10.6 years(range 6 months-20 yens). 2. The level of EMG was lowest between the third and the fourth week of the training except in Cases I and IV. 3. The patients began to show a nonconciliatory attitude at the first session of the fifth week of the training.

  • PDF

Biomechanical Analysis on Change of Toe-out Angle in Squat (스쿼트 시 Toe-out 각도 변화에 따른 운동역학적 변인 분석)

  • Song, Hyeong Kyeong;So, Jae Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.185-196
    • /
    • 2019
  • Objective: The aim of this study was to suggest correct and effective way of squat through biomechanical analysis variables on the change of the toe-out angle. Method: 7 high school male weightlifter (age: $17.57{\pm}0.53yrs$, height: $174.0{\pm}3.93cm$, weight: $81.0{\pm}9.17kg$, 1RM: $164.29{\pm}20.7kg$) participated in this study. Results: Angle of the hip joint at E2 was smaller than toe-out angle was in $20^{\circ}$ than in $0^{\circ}$ (p<.05). Angular velocity of the foot joint at E1 and E3 was quicker that in $10^{\circ}$ than in $30^{\circ}$ (p<.05). Anterior-posterior stability index was greater that toe-out angle was in $30^{\circ}$ than in $0^{\circ}$ (p<.05). In average iEMG of flexion phase, VM of right, left leg showed high activity at toe-out angle $30^{\circ}$. In average iEMG of flexion phase, extension phase and in peak iEMG, RF of right leg, VM and VL of left leg showed high activity at all of the toe-out angles. In average iEMG of flexion phase, extension phase and in peak iEMG, all of the muscles activity of right leg showed high in $10^{\circ}$ and low in $0^{\circ}$, $30^{\circ}$. Conclusion: It is judged that setting the toe-out angle $10^{\circ}$ in squat help to efficiently use muscles and ensure stability.

Effects of EMG-Biofeedback Using Closed Kinetic Chain Exercise on Q-angle and Quadriceps Muscle Activation in Patellofemoral Pain Syndrome

  • Kim, Je-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.2
    • /
    • pp.65-70
    • /
    • 2016
  • Purpose: The aim of this study was to determine the effects of electromyographic (EMG)-Biofeedback using closed kinetic chain exercise (EB-CKCE) on quadriceps angle (Q-angle) and quadriceps muscle activation and muscle activation ratio in subjects with patellofemoral pain syndrome and to provide fundamental information on rehabilitation exercise in patellofemoral pain syndrome. Methods: Thirty participants who met the criteria were included. The subjects were randomly divided into three groups: control group (Group I, n=10), semi-squat exercise group (Group II, n=10), and EMG-Biofeedback using closed kinetic chain exercise group (Group III, n=10). Intervention was provided to each group for eight weeks (three times per week; 30 minutes per day). Subjects were measured on Q-angle and quadriceps muscle activation. Results: Significant difference in Q-angle and quadriceps muscle activation was observed in groups II and III compared with control group I (p<0.01). Results of post-hoc analysis showed a significant difference in Q-angle and quadriceps muscle activation in on group III compared with groups I and II. Conclusion: Findings of this study suggest that closed kinetic chain exercise using EMG-Biofeedback that provides real-time biofeedback information on muscle contraction may have a beneficial effect on improvement of Q-angle and quadriceps muscle activation in patellofemoral pain syndrome.

An Algorithm for the Optimum Separation of Superimposed EMG Signal Using Wavelet Filter (웨이브렛 필터를 이용한 복합 중첩 근신호의 최적화 분리 알고리즘)

  • 이영석;김성환
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.319-326
    • /
    • 1996
  • Clinical myography(EMG) is a technique for diagnosing neuromuscular disorders by analyzing the electrical signal that can be records by needle electrode during a muscular contraction. The EMG signal arises from electrical discharges that accompany the generation of force by groups of muscular fiber, and the analysis of EMG signal provides symptoms that can distinguish disorder of mLecle from disor- ders of nerve. One of the methods for analysis of EMG signal is to separate the individual discharge-the motor unit action potentials(MVAPS) - from EMG signal. But we can only observe the EMG signal that is a superimposed version of time delayed MUAPS. To obtain the information about MUAP(, i.e., position, firing number, magnitude etc), first of all, a method that can separate each MUAP from the EMG signal must be developed Although the methods for MUAP separation have been proposed by many researcherl they have required heavy computational burden. In this paper, we proposed a new method that has less computational burden and performs more reliable separation of superimposed EMG signal using wavelet filter which has multiresolution analysis as major property. As a result, we develope the separation algorithm of superimposed EMG signal which has less computational burden than any other researchers and exacutes exact separation process. The performance of this method has been discussed in the automatic resolving procedure which is neccessary to identify every firing of every motor unit from the EMG pattern.

  • PDF

Effects of Shortening of Pectoralis Minor Muscle on Muscle Activity of Trapezius and Pectoralis Major Muscles (작은가슴근의 단축이 등세모근과 큰가슴근의 근 활성도에 미치는 영향)

  • Yang, Hoesong;Bae, Sehyeon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.4
    • /
    • pp.85-92
    • /
    • 2013
  • PURPOSE : The purpose of this study was to determine the effects of the length of the pectoralis minor on muscle activity of trapezius and pectoralis major in subjects in subjects with shortened pectoralis minor muscle. METHOD : The subjects was participated in 36 with shortened pectoralis minor muscle. All subjects was examined the length test of pectoralis minor muscle. we divided by 3 groups. group I(n=12) was for 4~5cm of length of pectoralis minor muscle, group II(n=12) was for 5~6cm, group III(n=12) was for above 6cm. The EMG activity of upper trapezius, middle trapezius, lower trapezius and pectoralis major muscle activity was measured by surface EMG while elevationg the right arm in sitting postion with head to the neutral, shoulder elevation $135^{\circ}$ with scaption. Data were analyed using one-way ANOVA with a Tukey post hoc test. RESULT : The EMG activity differed significantly among the three groups(p<.05). The group III had significantly greater EMG activity of upper trapezius and pectoralis major muscles than group I and II(p<.05). Also, The group III had significantly smaller EMG activity of lower trapezius muscle than group I and II(p<.05). But, these was no significant difference in the EMG activity of the middle trapezius muscle among the groups (p.05). CONCLUSION : Therefore, the result of this study should be suggested that the shortened pectoralis minor muscle was affected the EMG activity of the upper trapezius, lower trapezius and pectoralis major. Ultimately the length of the pectoralis minor muscle leads to the muscle imbalance in shoulder girdle.

OWAS and EMG-based Mason's Physical Workload Measurement (OWAS 및 근전도 기반 석공 작업부하 비교연구)

  • Seo, Byoung-Wook;Lim, Tae-Kyung;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.194-195
    • /
    • 2015
  • Methods for measuring the physical workload of construction workers are classified into posture assessment techniques (i.e., OWAS, RULA, etc.) and physiological measurement techniques (i.e., EMG, heart rate, etc.). The one does not quantify the workload on a specific body part of a worker by considering the weight of the hand tools or materials on hand and time for holding a particular posture. This paper presents a procedure for evaluating a physical demand using the electromyography (EMG) sensor. This study compares the EMG measurement and the posture assessment. The case study is carried out on a masonry operation.

  • PDF