• Title/Summary/Keyword: hysteresis damping ratio

Search Result 24, Processing Time 0.031 seconds

Comparative analysis of damping ratio determination methods based on dynamic triaxial tests

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • v.25 no.4
    • /
    • pp.249-267
    • /
    • 2023
  • Various methods for determining the damping ratio have been proposed by scholars both domestically and abroad. However, no comparative analysis of different determination methods has been seen yet. In this study, typical sand (Fujian standard sand) and cohesive soils were selected as experimental objects, and undrained strain-controlled dynamic triaxial tests were conducted. The differences between existing damping ratio determination methods were theoretically compared and analyzed. The results showed that the hysteresis curve of cohesive soils had better symmetry and more closely conformed to the definition of equivalent linear viscoelasticity. For non-cohesive soils, the differences in damping ratio determined by six methods were significant. The differences decreased with increasing confining pressure and relative density, but increased gradually with increasing shear strain, especially at high shear strains, where the maximum relative error reached 200%. For cohesive soils, the differences in damping ratio determined by six methods were relatively small, with a maximum relative error of about 50%. Moreover, they were less affected by effective confining pressure and had the same changing trend under different effective confining pressures. The damping ratio determination method has a large effect on the seismic response of soils distributed by non-cohesive soils, with a maximum relative error of about 15% for the PGA and up to about 30% for the Sa. However, for soil layers distributed by cohesive soils, the damping ratio determination method has less influence on the seismic response. Therefore, it is necessary to adopt a unified damping ratio determination method for non-cohesive soils, which can effectively avoid artificial errors caused by different determination methods.

An Experimental Study on the Damping Capacity of Lead Rubber Bearing with High Lead-plug Area Ratio (납-플러그 면적비가 큰 LRB의 감쇠능력에 관한 실험적 연구)

  • Choi, Jung-Ho;Kim, Woon-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.217-224
    • /
    • 2009
  • Many engineering researches are performed to ensuring structural safety from earthquake. In this study, the damping capacity of LRB(lead rubber bearing) with high lead-plug area ratio was examined by hysteresis loop from experiments. The displacement controlled tests were performed for 12 specimens designed in 2 types by lead-plug area ratio as main parameter. Each coupled specimens were tested by 3 times sinusoidal loads with different loading velocities. From the experimental results, LRB with high lead-plug area ratio has sufficient damping ratio for reducing horizontal seismic load to structures.

Determination of Damping Modification Factor in RC Structures Due to Energy Absorption Efficiency (에너지 흡수효율에 의한 철근콘크리트 구조물의 감쇠비 수정계수 결정)

  • 김장훈;좌동훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • The modification factor( k-factor) of equivalent damping ratio utilized in the current state-of-the-practice to account for the imperfection of reinforced concrete structures in hysteresis loop is investigated. From this, it is found that the current modification factor does not include the effect of cyclic loading, one of the important characteristic properties of earthquake loading. This could be taken into account by considering the energy absorption efficiency based on the cummulative plastic deformation. From the study, it is suggested that the current approach for the modification factor for the equivalent damping ratio should be reformed.

  • PDF

Study on the Application of Damping Ratio in the Seismic Performance Evaluation of Concrete Dams (콘크리트 댐 내진성능평가 시 감쇠비 적용 방안 고찰)

  • Jeong-Keun Oh;Yeong-Seok Jeong;Minho Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2023
  • The purpose of this paper is to review the appropriateness of the application method for the value of the damping ratio suggested in the current design standards and evaluation guidelines when evaluating the seismic performance of concrete dams and to suggest improvements. As a result of the study, for the magnitude of the damping ratio in the dynamic elastic analysis, it is necessary to refer to the case of a similar dam in which the magnitude of the earthquake load is similar and the reproducibility of the damping ratio has been verified. Considering this, it is necessary to apply a low damping ratio and consider adding hysteresis damping in case of nonlinear behavior. In addition, since the concrete dam body located on the rock has insignificant radiation attenuation effect, it is not reasonable to increase the damping ratio of the concrete dam body to reflect the radiation damping. Therefore, in order to evaluate the realistic seismic performance of concrete dams, it is necessary to revise the damping ratio-related contents contained in the current dam design standards and evaluation guidelines.

Analytical Performance Evaluation of Structure Reinforced with HRS Damper (고감쇠고무와 강재슬릿의 복합 댐퍼로 보강한 건축물의 해석적 성능평가)

  • Kim, Yu-Seong;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • In this study, an incremental loading test of the HRS(Hybrid Rubber Slit) damper was additionally performed to define the physical characteristics according to the incremental test results, and an analytical study was performed according to the damping design procedure by selecting an example structure. As a result of performing seismic performance evaluation before reinforcement by selecting a RC structure similar to an actual school structure as an example structure, the story drift ratio was satisfied, but some column members collapsed due to bending deformation. In order to secure the seismic performance, the damping design procedure of the HRS damper was presented and performed. As a result of calculating the amount of damping device according to the expected damping ratio and applying it to the example structure, the hysteresis behavior was stable without decrease in strength, and the story drift ratio and the shear force were reduced according to the damping effect. Finally the column members that had collapsed before reinforcement satisfied the LS Level.

Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe

  • Zahrai, Seyed Mehdi;Cheraghi, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Analytical and experimental studies of the innovative pipe in pipe damper have been recently investigated by the authors. In this paper, by adding lead or zinc infill or slit diaphragm inside the inner pipe, it is tried to increase the equivalent viscous damping ratio improving the cyclic performance of the recently proposed multi-level control system. The damper consists of three main parts including the outer pipe, inner pipe and added complementary damping part. At first plastic deformations of the external pipe, then the internal pipe and particularly the added core and friction between them make the excellent multi-level damper act as an improved energy dissipation system. Several kinds of added lead or zinc infill and also different shapes of slit diaphragms are modeled inside the inner pipe and their effectiveness on hysteresis curves are investigated with nonlinear static analyses using finite element method by ABAQUS software. Results show that adding lead infill has no major effect on the damper stiffness while zinc infill and slit diaphragm increase damper stiffness sharply up to more than 10 times depending on the plate thickness and pipe diameter. Besides, metal infill increases the viscous damping ratio of dual damper ranging 6-9%. In addition, obtained hysteresis curves show that the multi-level control system as expected can reliably dissipate energy in different imposed energy levels.

Dynamic loading tests and analytical modeling for high-damping rubber bearings

  • Kyeonghoon Park;Taiji Mazda;Yukihide Kajita
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.161-175
    • /
    • 2023
  • High-damping rubber bearings (HDRB) are commonly used as seismic isolation devices to protect civil engineering structures from earthquakes. However, the nonlinear hysteresis characteristics of the HDRB, such as their dependence on material properties and hardening phenomena, make predicting their behavior during earthquakes difficult. This study proposes a hysteretic model that can accurately predicts the behavior of shear deformation considering the nonlinearity when designing the seismic isolation structures using HDR bearings. To model the hysteretic characteristics of the HDR, dynamic loading tests were performed by applying sinusoidal and random waves on scaled-down specimens. The test results show that the nonlinear characteristics of the HDR strongly correlate with the shear strain experienced in the past. Furthermore, when shear deformation occurred above a certain level, the hardening phenomenon, wherein the stiffness increased rapidly, was confirmed. Based on the experimental results, the dynamic characteristics of the HDR, equivalent stiffness, equivalent damping ratio, and strain energy were quantitatively evaluated and analyzed. In this study, an improved bilinear HDR model that can reproduce the dependence on shear deformation and hardening phenomena was developed. Additionally, by proposing an objective parameter-setting procedure based on the experimental results, the model was devised such that similar parameters could be set by anyone. Further, an actual dynamic analysis could be performed by modeling with minimal parameters. The proposed model corresponded with the experimental results and successfully reproduced the mechanical characteristics evaluated from experimental results within an error margin of 10%.

Seismic Performance Evaluation of Structure Reinforced with Precast-Buckling Restrained Brace of Engineering Plastics (공업용 플라스틱의 선조립형 비좌굴가새로 보강한 건축물의 내진 성능 평가)

  • Kim, Yu-Seong;Park, Byung-Tae;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.31-38
    • /
    • 2021
  • The precast-buckling restrained braces(PC-BRB) reinforced with engineering plastics that can compensate for the disadvantages in the manufacturing process of the existing buckling restrained brace. In this study, to examine the applicability of PC-BRB to actual structures, example structures similar to school facilities were selected and the reinforcement effect was analyzed analytically according to the damping design procedure of PC-BRB. Load-displacement curve through the incremental loading test appeared similar to the bilinear curve. Applying test result, Analytical model of PC-BRB model was constructed and applied to the example structure. As a result of the analysis, the PC-BRB showed stable hysteresis behavior without lowering the strength, and the inter story drift ratio and the shear force were reduced due to the damping effect. In addition, the reduction ratio of the shear force was similar to the reduction ratio assumed when designing the damping device.

Development of Air Spring Damper System(ASDS) (공기 스프링 댐퍼 시스템(ASDS)의 개발)

  • Kim, Dong Baek;Park, Heung Sik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.829-838
    • /
    • 2021
  • Purpose: The Air Spring Damper System (ASDS) is proposed when existing concrete structures that have not been seismic resistant for economic and technical reasons or low-rise concrete structures that are difficult to earthquake. Method: To conduct a study on the damping force antigen in the kinetic equation of free vibration, we analyze whether this device has damping ability as a damper experimentally and theoretically, and examine the possibility of field application. Result: The air damper system is considered to be more economical than steel hysteresis dampers even if the number of dampers increases due to its easy manufacture and construction and low restrictions on shape, size, material, etc. Conclusion: In an air spring damper system, it is essential to reduce the diameter of the air inlet/outlet hole to improve the damping ratio, and in this case, if the diameter exceeds a certain lower limit, consideration of the compressibility of air is required, so further research is needed.

The effect of rubber bumper in order to suggest a new equation to calculate damping ratio, subjected building pounding during seismic excitation

  • Khatami, S.M.;Naderpour, H.;Mortezaei, A.R.;Barros, R.C.;Maddah, M.
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.129-138
    • /
    • 2022
  • One of the objectives to prevent building pounding between two adjacentstructures is to considerseparation distance or decrease relative displacement during seismic excitation. Although the majority of building codes around the world have basically suggested some equations or approximately recommended various distances between structuresto avoid pounding hazard, but a lot of reportsin zone of pounding have obviously shown thatsafety situation or economic consideration are not always provided due to the collisions between buildings and the cost of land, respectively. For this purpose, a dynamic MDOF model by having base isolation system is numerically considered and using various earthquake records, relative displacements are mathematically investigated. Different equations to determine the value of damping ratio are collected and the results of evaluations are listed for comparison among them to present a new equation for determination of impact damping ratio. Presented equation is depends significantly on impact velocity before and after impact based on artificial neural network, which the accuracy of them is investigated and also confirmed. In order to select the optimum equation, hysteresisloop of impact between base of building and rubber bumper is considered and compared with the hysteresis loop of each impact, calculated by different equations. Finally, using representative equation, the effect of thickness, number and stiffness of rubber bumpers are numerically investigated. The results of analysis indicate that stiffness and number of bumpers have significantly affected in zone of impact force while the thickness of bumpers have not shown significant influence to calculate impact force during earthquake. For instance, increasing the number of bumpers, gap size between structures and also the value of stiffness is caused to decrease impact force between models. The final evaluation demonstrates that bumpers are able to decrease peak lateral displacement of top story during impact.