• Title/Summary/Keyword: hypoxic brain injury

Search Result 51, Processing Time 0.035 seconds

The Effect of Hyperthermic Pretreatment in a Neonatal Rat Model of Hypoxic-ischemic Brain Injury (열 전처지가 신생쥐의 허혈성 저산소성 뇌손상에 미치는 영향)

  • Kwak, Su-Hee;Lim, Hae-Ri;Kim, Heng-Mi;Choe, Byung-Ho;Kwon, Soon-Hak;Lee, Kyung-Hee;Oh, Ki-Won;Shon, Yoon-Kyung
    • Neonatal Medicine
    • /
    • v.15 no.1
    • /
    • pp.32-37
    • /
    • 2008
  • Purpose : Perinatal asphyxia is an important cause of neonatal mortality and subsequent lifelong neurodevelopmental handicaps. Although many treatment strategies have been tested, there is currently no clinically effective treatment to prevent or reduce the harmful effects of hypoxia and ischemia in humans. In the clinical setting, maternal hyperthermia induces adverse effects on the neonatal brain, but recent studies have shown that hyperthermic pretreatment (PT) plays some role in hypoxic-ischemic (HI) injuries of the developing brain. The present study investigated the effect of hyperthermic PT on HI brain injuries in newborn rats. Methods : HI was produced in 7-day-old neonatal rats by unilateral common carotid artery ligation, followed by hypoxia with 8% oxygen at $38^{\circ}C$ for 2 hours. Twenty-four hours before HI, one-half of the pups were exposed to a $40^{\circ}C$ environment for 2 hours. The severity of the brain injury was assessed 7 days after the HI. Results : Hyperthermic PT reduced the gross and histopathologic findings of brain injury from 64.7 to 31.2% (P<0.05). There were no differences in location and severity of injury between the pretreated and control brains. Conclusion : These findings indicate that hyperthermic PT provides neuroprotective benefits on HI in the developing brain. Also, these findings suggest maternal hyperthermia may have protective effect on perinatal HI brain injuries.

The Neuroprotective Effects of 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) Via Mediation of Nitric Oxide Synthase on Hypoxic-ischemic Brain Injury in Neonatal Rats

  • Jung, Ji-Eun;Keum, Kyung-Hae;Choi, Eun-Jin;Kim, Jin-Kyung;Chung, Hai-Lee;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2011
  • Purpose: Current studies have demonstrated the neuroprotective effects of 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) in many animal models of brain injury, including hypoxic-ischemic (HI) encephlopathy, trauma and excitotoxicity, but limited data are available for those during the neonatal periods. Here we investigated whether CNQX can protect the developing rat brain from HI injury via mediation of nitric oxide synthase. Methods: In an in vivo model, left carotid artery ligation was done in 7-day-old Sprague-Dawley (SD) rat pups. The animals were divided into six groups; normoxia (N), hypoxia (H), hypoxia with sham-operation (HS), hypoxia with operation (HO), HO treated with vehicle (HV), and HO treated with CNQX at a dose of 10 mg/kg (HC). Hypoxia was made by exposure to a 2 hr period in the hypoxic chamber (92% $N_2$, 8% $O_2$). In an in vitro model, embryonic cortical neuronal cell culture of SD rats at 18-day gestation was done. The cultured cells were divided into three groups: normoxia (N), hypoxia (H), and hypoxia treated with CNQX (HC). The N group was prepared in 5% $CO_2$ incubators and the other groups were placed in 1% $O_2$) incubators (94% $N_2$, 5% $CO_2$) for 16 hr. Results: In the in vitvo and in vivo models, the expressions of iNOS and eNOS were reduced in the hypoxia group when compared to the normoxia group, whereas they were increased in the CNQX-treated group compared to the hypoxia group. In contrast, the expression of nNOS was showed reversely. Conclusion: CNQX has neuroprotective property over perinatal HI brain injury via mediation of nitric oxide synthase.

Cortical Neuronal Loss after Chronic Prenatal Hypoxia : A Comparative Laboratory Study

  • Chung, Yoon Young;Jeon, Yong Hyun;Kim, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.6
    • /
    • pp.488-491
    • /
    • 2014
  • Objective : The purpose of this study was to investigate the prenatal hypoxic effect on the fetal brain development. Methods : We used the guinea pig chronic placental insufficiency model to investigate the effect of hypoxia on fetal brain development. We ligated unilateral uterine artery at 30-32 days of gestation (dg : with term defined as -67 dg). At 50 dg, 60 dg, fetuses were sacrificed and assigned to either the growth-restricted (GR) or control (no ligation) group. After fixation, dissection, and sectioning of cerebral tissue from these animals, immunohistochemistry was performed with NeuN antibody, which is a mature neuronal marker in the cerebral cortex. Results : The number of NeuN-immunoreactive (IR) cells in the cerebral cortex did not differ between the GR and control groups at 50 dg. However, the number of NeuN-IR cells was lesser in GR fetuses than in controls at 60 dg (p<0.05). Conclusion : These findings show that chronic prenatal hypoxia affect the number of neuron in the cerebral cortex of guinea pig fetus at 60 dg. The approach used in this study is helpful for extending our understanding of neurogenesis in the cerebral cortex, and the findings may be useful for elucidating the brain injury caused by prenatal hypoxia.

The Effect of Postnatal Dexamethasone Treatment on Hypoxic-Ischemic Brain Injury in Neonatal Rats (신생쥐의 저산소성 허혈성 뇌손상에서 손상 후 덱사메타손의 투여 효과)

  • Park, Chang Ro;Park, Kyung Pil;Kim, Heng Mi;Sohn, Yoon Kyung
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.10
    • /
    • pp.989-995
    • /
    • 2003
  • Purpose : Dexamethasone is frequently administered to prevent or treat chronic lung disease in human neonates who are also prone to hypoxic-ischemic(HI) insults. Recently, meta-analysis of the follow-up studies reveals a significantly increased odd ratio for the occurrence of cerebral palsy or an abnormal neurologic outcome, and there is conflicting evidence regarding the impact of dexamethasone exposure on HI brain injury. This study was conducted to explore the effect of post-HI dexamethasone administration on neuronal injury in neonatal rats. Methods : HI was produced in seven-day-old rats by right carotid artery ligation followed by two hours of 8% oxygen exposure. At the end of HI, the animals were injected intraperitoneally either with dexamethasone(0.5 mg/kg) or saline. Neuronal injury was assessed seven days after the HI by the area of infarction, TUNEL reactivity, Bcl-2 and Bax expression in brain. Results : Post-insult dexamethasone administration resulted in reduction of weight gain and a higher mortality rate during seven days after HI. Dexamethasone treatment revealed no effect on the size of brain infarction induced by HI. Bax protein expression increased in dexamethasone treated brain but Bcl-2 protein expression and TUNEL reactivity revealed no significant differences between dexamethasone treated and non treated brain. Increased Bax protein expression suggest upregulation of the apoptosis by dexamethasone. Conclusion : The result suggests the adverse role of Post-HI administration of dexamethasone in neonatal HI.

Cellular and Biochemical Mechanism of Perinatal Hypoxic-Ischemic Brain Injury (주산기 저산소-허혈 뇌손상의 세포 생화학적 기전)

  • Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.5
    • /
    • pp.560-567
    • /
    • 2002
  • 주산기 뇌손상은 주로 급격한 저산소-허혈 손상에 의하는데 급격한 산소 공급의 차단은 oxidative phosphorylation을 정지 시켜서 뇌대사를 위한 에너지 공급이 차단되게 된다. 에너지 공급이 차단된 뇌세포는 뇌세포막에서 세포 내외의 이온 농도 차를 유지시키던 ATP-dependent $Na^{+}-K^{+}$ pump의 기능이 정지 되고, 세포 내외의 농도 차에 따라 $Na^{+}$, $Cl^{+}$, $Ca^{{+}{+}}$의 대규모 세포 내로 이동이 일어난다. 세포 내로 calcium 이온의 이동은 glutamate 수용체의 활성화에 의해서도 일나는데, 세포 내 calcium 이온의 증가는 protease, lipase, nuclease 등을 활성화 시켜 세포를 사망에 이르게 하는 연속적이고 다양한 생화학적 반응을 일으키게 된다. Glutamate는 대표적인 신경 전달 물질인데 저산소-허혈 손상 시 glutamate 수용체의 지나친 흥분은 미성숙 뇌에 뇌손상을 유발하는데, NMDA 또는 non-NMDA 수용체와 복합체를 형성하고 있는 calcium 이동 통로를 활성화 시켜 세포 내 calcium 이온을 증가시키고, 그 외에 metabotropic recetor는 G-protein의 활성화 등을 통해 뇌손상을 유발하는 다양한 생화학적 반응을 매개한다. 저산소-허혈 손상 후 재산소화와 재관류가 일어나면서 뇌세포의 지연성 사망(secondary neuronal death)이 일어나는데 이는 초기 손상 후 뒤이어 일어나는 다양한 생화학적 반응에 의하는데 다량의 산소 자유기 발생, nitric oxide의 생성, 염증 반응과 싸이토카인, 신경전도 물질의 과흥분 등이 관여하며, 신경 세포 사망은 세포괴사(necrosis)뿐 아니라 일부는 세포 사멸(apoptosis)로 알려진 의도된 세포 사망(programmed cell death)에 의한 것으로 생각되고 있다(Fig. 2).

Effects of $K^+$ Channel Modulators on Extracellular $K^+$ Accumulation during Ischemia in the Rat Hippocampal Slice (해마절편의 허혈성 $K^+$ 축적에 대한 $K^+$채널 조절 약물의 작용)

  • Choi, Jin-Kyu;Chun, Boe-Gwun;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.681-690
    • /
    • 1997
  • Loss of synaptic transmission and accumulation of extracellular $K^+([K^+]_O)$ are the key features in ischemic brain damage. Here, we examined the effects of several $K^+$channel modulators on the early ischemic changes in population spike (PS) and $[K^+]_o$ in the CA1 pyramidal layer of the rat hippocampal slice using electrophysiological techniques. After onset of anoxic aglycemia (AA), orthodromic field potentials decreased and disappeared in $3.3{\pm}0.22\;min$ $(mean{\pm}SEM,\;n=40)$. The hypoxic injury potential (HIP), a transient recovery of PS appeared at $6.0{\pm}0.25\;min$ (n=40) in most slices during AA and lasted for $3.3{\pm}0.43\;min$. $[K^+]_o$ increased initially at a rate of 0.43 mM/min (Phase 1) and later at a much faster rate (12.45 mM/min, Phase 2). The beginning of Phase 2 was invariably coincided with the disappearance of HIP. Among $K^+$ channel modulators tested such as 4-aminopyridine (0.03, 0.3 mM), tetraethylammonium (0.1 mM), NS1619 $(0.3{\sim}10\;{\mu}M)$, niflumic acid (0.1 mM), glibenclamide $(40\;{\mu}M)$, tolbutamide $(300\;{\mu}M)$ and pinacidil $(100\;{\mu}M)$, only 4-aminopyridine (0.3 mM) induced slight increase of $[K^+]_o$ during Phase 1. However, none of the above agents modulated the pattern of Phase 2 in $[K^+]_o$ in response to AA. Taken together, the experimental data suggest that 4-aminopyridine-sensitive $K^+$channels, large conductance $Ca^{2+}-activated$ $K^+$ channels and ATP-sensitive $K^+$ channels may not be the major contributors to the sudden increase of $[K^+]_o$ during the early stage of brain ischemia, suggesting the presence of other routes of $K^+$ efflux during brain ischemia.

  • PDF

Neuroprotective effects of L-carnitine against oxygen-glucose deprivation in rat primary cortical neurons

  • Kim, Yu-Jin;Kim, Soo-Yoon;Sung, Dong-Kyung;Chang, Yun-Sil;Park, Won-Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.7
    • /
    • pp.238-248
    • /
    • 2012
  • Purpose: Hypoxic-ischemic encephalopathy is an important cause of neonatal mortality, as this brain injury disrupts normal mitochondrial respiratory activity. Carnitine plays an essential role in mitochondrial fatty acid transport and modulates excess acyl coenzyme A levels. In this study, we investigated whether treatment of primary cultures of rat cortical neurons with L-carnitine was able to prevent neurotoxicity resulting from oxygen-glucose deprivation (OGD). Methods: Cortical neurons were prepared from Sprague-Dawley rat embryos. L-Carnitine was applied to cultures just prior to OGD and subsequent reoxygenation. The numbers of cells that stained with acridine orange (AO) and propidium iodide (PI) were counted, and lactate dehydrogenase (LDH) activity and reactive oxygen species (ROS) levels were measured. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the terminal uridine deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were performed to evaluate the effect of L-carnitine (1 ${\mu}M$, 10 ${\mu}M$, and 100 ${\mu}M$) on OGD-induced neurotoxicity. Results: Treatment of primary cultures of rat cortical neurons with L-carnitine significantly reduced cell necrosis and prevented apoptosis after OGD. L-Carnitine application significantly reduced the number of cells that died, as assessed by the PI/AO ratio, and also reduced ROS release in the OGD groups treated with 10 ${\mu}M$ and 100 ${\mu}M$ of L-carnitine compared with the untreated OGD group (P<0.05). The application of L-carnitine at 100 ${\mu}M$ significantly decreased cytotoxicity, LDH release, and inhibited apoptosis compared to the untreated OGD group (P<0.05). Conclusion: L-Carnitine has neuroprotective benefits against OGD in rat primary cortical neurons in vitro.

Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase 1/2 Activation in Rat C6 Glioma Cells

  • Yang, Seung-Ju;Pyen, Jhin-Soo;Lee, In-Soo;Lee, Hye-Young;Kim, Young-Kwon;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.480-486
    • /
    • 2004
  • Brain ischemia brings about hypoxic insults. Hypoxia is one of the major pathological factors inducing neuronal injury and central nervous system infection. We studied the involvement of mitogen-activated protein (MAP) kinase in hypoxia-induced apoptosis using cobalt chloride in C6 glioma cells. In vitro cytotoxicity of cobalt chloride was tested by MTT assay. Its $IC_{50}$ value was $400\;{\mu}M$. The DNA fragment became evident after incubation of the cells with $300\;{\mu}M$ cobalt chloride for 24 h. We also evidenced nuclear cleavage with morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signal pathway of cobalt chloride-induced apoptosis in C6 cells. The activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2) started to increase at 1 h and was activated further at 6 h after treatment of 400 M cobalt chloride. In addition, pretreatment of PD98059 inhibited cobalt chloride-induced apoptotic cell morphology in Electron Microscopy. These results suggest that cobalt chloride is able to induce the apoptotic activity in C6 glioma cells, and its apoptotic mechanism may be associated with signal transduction via MAP kinase (ERK 1/2).

Acute Pulmonary Thromboembolism: 14 Years of Surgical Experience

  • Park, Jiye;Lim, Sang-Hyun;Hong, You Sun;Park, Soojin;Lee, Cheol Joo;Lee, Seung Ook
    • Journal of Chest Surgery
    • /
    • v.52 no.2
    • /
    • pp.78-84
    • /
    • 2019
  • Background: Pulmonary thromboembolism (PTE) is a life-threatening disease with high mortality. This study aimed to assess the outcomes of surgical embolectomy and to clarify the sustained long-term effects of surgery by comparing preoperative, postoperative, and long-term follow-up echocardiography outcomes. Of 22 survivors, 21 were followed up for a mean (median) period of $6.8{\pm}5.4years$ (4.2 years). Methods: We retrospectively reviewed 27 surgical embolectomy cases for massive or submassive acute PTE from 2003 to 2016. Immediate and long-term follow-up outcomes of surgical embolectomy were assessed on the basis of 30-day mortality, long-term mortality, postoperative complications, right ventricular systolic pressure, and tricuspid regurgitation grade. Results: The 30-day and long-term mortality rates were 14.8% (4 of 27) and 4.3% (1 of 23), respectively. Three patients had major postoperative complications, including hypoxic brain damage, acute kidney injury, and endobronchial b leeding, respectively (3.7% each). Right ventricular systolic pressure (median [range], mm Hg) decreased from 62.0 (45.5-78.5) to 31.0 (25.7-37.0, p<0.001). The tricuspid valve regurgitation grade (median [range]) decreased from 1.5 (0.63-2.00) to 0.50 (0.50-1.00, p<0.05). The improvement lasted until the last echocardiographic follow-up. Conclusion: Surgical embolectomy revealed favorable mortality and morbidity rates in patients with acute massive or submassive PTE, with sustained long-term improvements in cardiac function.

Functional recovery after transplantation of mouse bone marrow-derived mesenchymal stem cells for hypoxic-ischemic brain injury in immature rats (저산소 허혈 뇌 손상을 유발시킨 미성숙 흰쥐에서 마우스 골수 기원 중간엽 줄기 세포 이식 후 기능 회복)

  • Choi, Wooksun;Shin, Hye Kyung;Eun, So-Hee;Kang, Hoon Chul;Park, Sung Won;Yoo, Kee Hwan;Hong, Young Sook;Lee, Joo Won;Eun, Baik-Lin
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.7
    • /
    • pp.824-831
    • /
    • 2009
  • Purpose : We aimed to investigate the efficacy of and functional recovery after intracerebral transplantation of different doses of mouse mesenchymal stem cells (mMSCs) in immature rat brain with hypoxic-ischemic encephalopathy (HIE). Methods : Postnatal 7-days-old Sprague-Dawley rats, which had undergone unilateral HI operation, were given stereotaxic intracerebral injections of either vehicle or mMSCs and then tested for locomotory activity in the 2nd, 4th, 6th, and 8th week of the stem cell injection. In the 8th week, Morris water maze test was performed to evaluate the learning and memory dysfunction for a week. Results : In the open field test, no differences were observed in the total distance/the total duration (F=0.412, P=0.745) among the 4 study groups. In the invisible-platform Morris water maze test, significant differences were observed in escape latency (F=380.319, P<0.01) among the 4 groups. The escape latency in the control group significantly differed from that in the high-dose mMSC and/or sham group on training days 2-5 (Scheffe's test, P<0.05) and became prominent with time progression (F=6.034, P<0.01). In spatial probe trial and visible-platform Morris water maze test, no significant improvement was observed in the rats that had undergone transplantation. Conclusion : Although the rats that received a high dose of mMSCs showed significant recovery in the learning-related behavioral test only, our data support that mMSCs may be used as a valuable source to improve outcome in HIE. Further study is necessary to identify the optimal dose that shows maximal efficacy for HIE treatment.